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Abstract

This paper proposes a new panel data approach to evaluate the impact of social policy. We
consider a classical panel model with interactive fixed effects (IFE), which allows the cross-sectional
dependence through the presence of some (unobserved) common factors. The new approach com-
bines the ideas of Pesaran (2006) to estimate the panel model with IFE and Hsiao et al. (2012) to
construct counterfactuals. For the new approach, instead of estimating the unobserved factors, we
propose to use the observed data. Compared to the existing methods such as Synthetic Control
Method (SCM) (Abadie et al. (2010)) and the Generalized SCM (GSCM) (Xu (2017)), our new
approach possesses the advantages of: (1) there is no need to impose constraints on both the ob-
servables and unobservables; (2) the number of parameters to be estimated in the model is greatly
reduced. Moreover, we establish the asymptotic properties for the average treatment effect (ATE)
over post-treatment periods, which can be used to obtain statistical inference for the significance
of ATE or to construct confidence band for the treatment effects in the post-treatment periods.
Monte Carlo simulations show that our approach works remarkably well and has very desirable fi-
nite sample performance in terms of estimation bias, mean square of errors, and empirical rejection
frequency. We apply our method to study the impact of the US Stand Your Ground (SYG) law on
the state-level murder rate, and we find, in general, the SYG law has increased the murder rate for
the states adopting the SYG law.
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1 Introduction

When social scientists evaluate the economic impact of a policy intervention by using nonexperi-
mental panel data, the major challenge in existing literature is to construct counterfactuals of the
outcome in the absence of treatment, y0

it, because the outcome under the treatment, y1
it, and y0

it

cannot be simultaneously observed in reality (e.g., Heckman and Vytlacil (2007a, 2007b)), but the
treatment effect is measured as δit = y1

it − y0
it. In order to construct the counterfactuals and to

estimate the treatment effects for the policy impact, several approaches have been proposed in the
literature. To name a few, the synthetic control method (SCM) by Abadie et al. (2003, 2010, 2015)
and the generalized synthetic control method (GSCM) by Xu (2017), among others.1 Intuitively,
the idea of SCM is to find control units that are similar to the treated unit, then take a weighted
average of such control units to generate counterfactuals. These weights are calculated in such a
way that both the weighted outcomes and weighted control variables are close to the outcome and
control variables for the treated unit in the pretreated period, respectively. See also in Gobillon
and Magnac (2016) for an application of SCM on regional policy evaluation. Within the regression
framework, the SCM constitutes a constrained regression. As argued by Wan et al. (2018), when
the constraints are valid, SCM is an efficient method. When the constraints are not valid, SCM
could lead to biased prediction of counterfactuals. On the other hand, the GSCM relies on the
parametric specification of the model, and considers the estimation of all unknown parameters in
the model. In general, one would expect the parametric approach to be the most efficient when
the model is correctly specified. However, if the dimension of unobserved factors is unknown, then,
first, there is the issue of identifying the dimension of the unobserved factors from a finite sample.
Second, even if the dimension of the unobserved factors is known, the parametric model could
involve estimating too many unknown parameters relative to the sample size. Furthermore, if the
model is misspecified, then the resulting inference could be misleading.

To overcome the aforementioned difficulties, in this paper, we propose a simple-to-implement
panel data method to evaluate the impacts of social policy. This new panel data approach, which is
called PDX, is based on the classical linear fixed effects models with interactive fixed effects (IFE).
The PDX approach does not rely on the knowledge of the dimension of the unobserved factors. Nor
does it need to estimate the factor loading matrix. The number of unknown parameters involved
could considerably less than the number involved in the parametric GSCM approach. Moreover,
the PDX approach doesn’t need to impose certain constraints on the outcomes and control variables
between the treated units and control units.

Essentially, the PDX approach combines the ideas of Pesaran (2006) to estimate panel model
with IFE and Hsiao et al. (2012) to construct counterfactuals. On the one hand, the PDX approach
uses the common correlated effects (CCE) method of Pesaran (2006) to estimate the common slope
coefficient in the model with large cross-sectional units in a short/fixed time period, it can be

1When the model of interest is a pure factor model (i.e., no exogenous regressors in the model), Hsiao et al. (2012)
propose to contruct the counterfactuals by the so called PDA approach. See Gardeazabal and Vega-Bayo (2017) for
a comparison between SCM and PDA approaches.
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shown that the CCE estimation is consistent (Zhou and Zhang (2016)). On the other hand, once
the common slope coefficient of the control variables are consistently estimated, then the resulting
panel model will approximately be a pure factor model, and thus one can use the approach of Hsiao
et al. (2012) to construct counterfactuals for the treated units. Intuitively, the PDX approach can
be viewed as a semi-parametric approach since we propose to use observed data instead of trying
to estimate the unobserved factors in the model.

Our PDX approach contributes to the literature in the following ways. First, compared with the
pure factor model considered by Hsiao et al (2012), our approach allows the impact of exogenous
control covariates. Second, compared with the SCM, we don’t put any constraints on the outcomes
and control variables between the treated units and control units. Third, compared with the
parametric approach such as GSCM, our method doesn’t rely on the knowledge of the dimension
of unobserved factors, and has greatly reduced the number of parameters to be estimated in the
model. Finally, as the main contribution, we establish the asymptotics for the average treatment
effects (ATE) over post-treatment periods. The asymptotic property allows researchers to obtain
statistical inference about the significance of the ATE and to construct the confidence band for the
treatment effects of the post-treatment periods.

In order to examine the finite sample properties of the PDX approach, we conduct a variety set
of Monte Carlo simulations. Through the simulation studies, we observe that the PDX approach
outperforms both the SCM and GSCM approaches under all different data generating processes and
different sample configurations of cross-sectional dimensions and pre-treatment time dimensions.
In general, the counterfactuals of PDX have less bias and lower MSE than those obtained from
SCM and GSCM approaches. On the other hand, we can also observe that the statistical inference
obtained from the PDX is also valid, and the empirical rejection frequency is quite close to the
nominal value for significance test. Empirical application of the PDX approach to measure the
impact of the US Stand Your Ground (SYG) law on state level murder rate also highlights the
necessity of using our new approach. The counterfactuals from our PDX approach in general is
quite close to the pretreated actual murder rate, while the counterfactuals from both SCM and
GSCM deviate from the actuals quite often. Based on the results of PDX approach, we can observe
that the SYG law has certain positive effect on the state-level murder rate for states adopting the
SYG law, but the average impact is usually not very significant.

The rest of this paper is organized as follows. Section 2 sets up the model and proposes the
estimation steps of PDX. Asymptotics of the ATE constructed from PDX is provided in Section
3. Section 4 reports simulation results by comparing the relative performance of SCM, GSCM and
PDX under a variety set of data generating processes. An application of the impact of the US SYG
law on state-level murder rate and conclusion are provided in Section 5 and Section 6, respectively.
All mathematical proofs are relegated to the Appendix.
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2 Model and Estimation

2.1 The Model

Suppose there are observations (yit,xit) for i = 1, . . . , N and t = 1, . . . , T , where yit is the outcome
of interest of unit i at time t, xit is a k × 1 vector of covariates and T is time periods for which all
units are observed. Let T0 be the number of pretreatment periods, while it is first exposed to the
treatment at time T0 + 1. Let the dummy variable dit indicate the ith unit’s treatment status at
time t. The treatment indicator dit = 1 if unit i has been exposed to the treatment at time t and
dit = 0 otherwise, i.e. dit = 1 for i is treated unit and t > T0 and dit = 0 otherwise. The observed
data takes the form,

yit = dity
1
it + (1− dit) y0

it. (1)

For simplification, we assume d1t = 0 for t = 1, . . . , T0 and d1t = 1 for t = T0 + 1, . . . , T, while
dit = 0 for i = 2, . . . , N, and t = 1, . . . , T, i.e., we assume only the first unit is intervened by the
treatment. The method to be discussed can be generalized to more than one treated unit.

We assume y0
it is a function of k observables strictly exogenous factors, xit,

y0
it = x′itβ + vit, 1 ≤ t ≤ T, (2)

where β is a k × 1 vector of unknown parameters. The error term vit is decomposed as the sum
of the impacts of r unobserved common factors across individuals, ft = [f1t, . . . , frt]

′ , and the
idiosyncratic error term, uit with zero mean,

vit = γ ′ift + uit, (3)

where γi = (γi1, . . . , γir)
′ is an r× 1 vector of unknown factor loadings indicating the impact ft on

the ith unit.
Combining (1)-(3) yields

yit = δitdit + x′itβ + γ ′ift + uit, (4)

where δit is the treatment effect of unit i at time t. The format of factor component covers a
wide range of unobserved heterogeneities and putting the unobserved individual-specific factors
and the common time-specific factor loadings in the multiplicative form has the advantage over
the traditional additive form (e.g., Hsiao (2014)), since the former allows ”globe shocks at time
t” to be different for different individuals due to the differences in natural endowment or distinct
social or technological background. Moreover, the traditional additive form is nested within the
multiplicative form (Bai (2009), Hsiao (2018)). For example, if f1t = 1, f2t = ξt, γ1i = αi and
γ2i = 1, then the factor component of the model, γ ′ift = αi + ξt, stands for two-way fixed effect.

We shall make the following assumptions for the above model.
Assumption A1. E (uit|xit, ft,γi, d1t) = 0,∀i, t, E (uitujt) = 0 and with finite fourth moment.
Assumption A2. yi ⊥ d1t for i = 2, . . . , N , where yi = (yi1, . . . , yiT )′.
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Assumption A3. Let Xi = (xi1, . . . ,xiT ), then Xi ⊥ d1t for i = 1, . . . , N .
Assumption A4. E

(
‖xit‖2+ε

)
< M < ∞ for some ε > 0, E

(
‖γi‖

2
)
< M < ∞ and

E
(
‖ft‖2

)
< M <∞ for ∀i, t.

Several remarks can be made for the above assumptions. Assumption A1 assumes both the
observed explanatory variables, xit, and the unobserved common factors and factor loadings (ft,γi)
are strictly exogenous with respect to the idiosyncratic errors uit, and it can be relaxed to allow
uit exhibits weak cross-sectional dependence as in Hsiao and Zhou (2019). Assumption A2 assumes
only the treated units are affected by the policy shock, while the control group units should not
be influenced by the treatment. Assumption A3 restricts Xi being independent of the treatment.
These assumptions are quite standard in the treatment effects literature using panel data, such
as Hsiao et al (2012), Xu (2017), and Li and Bell (2017), among others. Assumption A4 is very
standard in the literature for panel models with IFE, e.g., Bai (2009), Hsiao (2018) and Sarafidis
and Wansbeek (2012).

2.2 The New Panel Data Approach

It worths pointing out that the GSCM method of Xu (2017) is a parametric approach for con-
structing counterfactuals, and the first step, which is known as the Principle Component Analysis
(PCA) of Bai (2009), requires both N and T0 to be large to obtain consistent estimation of β,
γi and ft. Furthermore, there is the issue of identifying the dimension of the unobserved factors
from a finite sample for the PCA approach. Even if the dimension of the unobserved factors is
known, the parametric model could involve estimating too many unknown parameters relative to
the sample size. In many applications, especially for microeconomics data, the pretreatment period
T0 is usually finite, but the cross-sectional units N could be large. Consequently, we consider gen-
erating counterfactuals through the following approach using panel data with exogenous regressors
(we name it PDX).

For model (2)-(3), instead of using the PCA approach of Bai (2009) to estimate the common
slope coefficient β, we can consider Pesaran’s (2006) common correlated effects (CCE) estimation.
The CCE estimator for β using the pretreated data has the form of

β̂CCE =

(
N∑
i=1

X′iMZ̄Xi

)−1 N∑
i=1

X′iMZ̄yi, (5)

where Xi = (xi1, . . . ,xiT0)′, MZ̄ = IT0−Z̄
(
Z̄′Z̄

)−1 Z̄′ with Z̄ = (z̄1, . . . , z̄T0)′ and z̄t = 1
N

∑N
j=1 zjt =

1
N

∑N
j=1 (yit,x′it)

′ .It is shown by Zhou and Zhang (2016) that the CCE estimator (5) is consistent
as long as N →∞.
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Given the consistent estimator of β, we note that

et = yt −Xtβ̂CCE = Λft + ut + Xt

(
β − β̂CCE

)
= Λft + ut +Op

(
N−1/2

)
, t = 1, . . . , T0, (6)

is proximately a pure factor model, where Xt = (x1t, . . . ,xNt)′, Λ = (γ1, . . . ,γN )′ and ut =
(u1t, . . . , uNt)′. Thus the Hsiao et al.’s (2012) approach can be applied to eliminate unobserved
factors ft and to construct counterfactuals. To this end, following Hsiao et al. (2012), we let a be a
vector lying in the null space of Λ, as N (Λ) , such that a′Λ = 0. For ease of notation, we normalize
the first element of a to be 1 and denote a′ = (1,−ã′)′.

Multiplying both sides of (6) by a′ yields

e1t = ã′ẽt + u1t − ã′ũt +Op

(
N−1/2

)
, t = 1, . . . , T0, (7)

where ẽt = (e2t, . . . , eNt)
′ and ũt = (u2t, . . . , uN,t)

′ .

For model (7), since et = yt −X′tβ̂CCE and E (u1t − ã′ũt) = 0 under assumption A1, then we
can run OLS to estimate ã in (7). The OLS estimator of ã is given by2

̂̃a =

(
T0∑
t=1

ẽtẽ′t

)−1 T0∑
t=1

ẽte1t. (8)

Given the estimator of ã, we can construct the estimated counterfactual of y0
1t as

ŷ0
1t = x′1tβ̂CCE + ̂̃a′ẽt

= x′1tβ̂CCE + ̂̃a′ (ỹt − X̃tβ̂CCE

)
, t = T0 + 1, . . . , T. (9)

where ỹt = (y2t, . . . , yNt)
′ and X̃t = (x2t, . . . ,xN,t)

′ denote the observations from the control units.
Formally, the PDX procedure to generate counterfactuals can be reached in the following steps.
Step 1: Use all pretreated data and Pesaran’s (2006) CCE method to estimate β, denoted by

β̂CCE .

2In principle, any choice of a that satisfies the condition that a′Λ = 0 will be fine for constructing couterfac-
tuals in (9) (see, e.g., the discussion in Hsiao et al. (2012)). However, the prediction error variance depends on
V ar (u1t − ã′ũt) . Therefore, we suggest choosing the element of a throught the optimization procedure using the
pretreatment observations

min
ã

T0∑
t=1

[
y1t − x′1tβ̂CCE − ã′

(
ỹt − X̃′tβ̂CCE

)]2
.
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Step 2: Conditional on β̂CCE, obtain ã by minimizing3

min
ã

T0∑
t=1

[(
y1t − x′1tβ̂CCE

)
− ã′

(
ỹt − X̃tβ̂CCE

)]2
, (10)

using observations from the pretreatment periods. This step can be estimated by OLS, model
selection as in Hsiao et al. (2012) or Lasso by Li and Bell (2017) if N is moderate large.4

Step 3: Generate counterfactuals by

ŷ0
1t = x′1tβ̂CCE + ̂̃a′ (ỹt − X̃tβ̂CCE

)
, T0 + 1 ≤ t ≤ T. (11)

Given the estimator (11), the treatment effect at time t is estimated by

δ̂1t = y1t − ŷ0
1t, t = T0 + 1 ≤ t ≤ T, (12)

and the average treatment effect (ATE) over post-treatment period is estimated by

∆̂1 =
1
T1

T∑
t=T0+1

δ̂1t, (13)

where T1 = T − T0 denotes the length post-treatment time periods.
Intuitively, the above PDX approach can be viewed as an extension of the approach of Hsiao

et al. (2012) to model with exogenous regressors, since the original Hsiao et al. (2012)’s approach
doesn’t include the covariates xit. However, once the coefficient of xit can be consistently estimated
and can be treated as a prior, then the eit of model (6) is known, and model (6) approximately
reduces to the pure factor model. Thus, the Hsiao et al.’s (2012) approach can be applied to
generate counterfactuals.

Remark 1 The advantage of the PDX approach in generating counterfactuals using (11) is that
we do not need to know the dimension of the unobserved factors. Also, there are significantly fewer
parameters involved than in the original GSCM approach, which could be important in the cases
with finite samples.

3 Asymptotics of the ATE

In this section, we establish the asymptotic property of the ATE of (13). To begin with, let
∆1 = E (∆1t) = 1

T1

∑T
t=T0+1

(
y1t − y0

1t

)
be the average treatment effect for the first unit.

3An intercept can be included in the optimization to avoid the scenario when a′Λ is not exactly equal to zero and
hence to impove the approximation performance.

4Instead of estimating β using the CCE approach in the Step 1, one can simultaneously estimate β and ã from
(10). However, in this case, the objective function (10) becomes nonlinear in β and ã, and certain numerical algorithm
is needed for feasible estimation of β and ã.
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For estimated ATE (13) across post-treatment periods, we have

Proposition 1 Under assumptions A1-A4, as (N,T0, T1)→∞, we have

∆̂1 −∆1 = Op

(
N−1/2 + T

−1/2
0 + T

−1/2
1

)
.

Proof is provided in the Appendix.

Remark 2 We note that from the above results, as long as N is large, T0 and T1 are large, then the
ATE ∆̂1 is a consistent estimator of ∆1. It should be noted that, compared to the approach of Hsiao
et al. (2012), where the convergence rate of ∆̂1 to ∆1 is Op

(
T
−1/2
0

)
+ Op

(
T
−1/2
1

)
(Li and Bell

(2017)), the convergence rate of ATE ∆̂1 to ∆1 in our PDX approach is Op
(
N−1/2

)
+Op

(
T
−1/2
0

)
+

Op

(
T
−1/2
1

)
. This is because we need to estimate the slope coefficient β first in our PDX approach,

once β is consistently estimated using the CCE approach with convergence rate of Op
(
N−1/2

)
, then

one can use the Hsiao et al. (2012)’s approach based on the residuals eit = yit−x′itβ̂CCE , and thus
the convergence rate of ATE ∆̂1 to ∆1 is Op

(
N−1/2

)
+Op

(
T
−1/2
0

)
+Op

(
T
−1/2
1

)
.

Now let’s turn to the asymptotic distribution of the ATE ∆̂1, which is summarized in the
following proposition.

Proposition 2 Under assumptions A1-A4, as (N,T0, T1)→∞, and T1
N → κ1 and T1

T0
→ κ2 where

0 ≤ κ1, κ2 <∞, 5 we have √
T1

(
∆̂1 −∆1

)
d→ N

(
0, σ2

∆1

)
,

where σ2
∆1

= σ2
u1 + κ1Σ′xΣβΣx + κ2Σ′fΣãΣf is the asymptotic variance of

√
T1

(
∆̂1 −∆1

)
, σ2

u1,

Σβ, Σx, Σf and Σã are given in the Appendix.

Proof is provided in the Appendix.
Given the above results, a consistent estimator for σ2

∆1
can be obtained by replacing the

probability limit with the corresponding sample analogous. For instance, Σβ can be estimated
by Σ̂β = D̂−1V̂D̂

−1
with D̂ = 1

N

∑N
i=1 X′iMZ̄X−1

i and V̂ = 1
N

∑N
i=1 X′iMZ̄ûiû′iMZ̄Xi where

ûi = MZ̄yi−MZ̄Xiβ̂CCE (Zhou and Zhang (2016)). Σx can be estimated by Σ̂x = 1
T1

∑T
t=T0+1 x1t.

The consistent estimator of Σã, denoted as Σ̂ã, can be obtained from Cattaneo et al. (2018a, 2018b).
For the estimation of Σf . We first note that

ỹt = X̃tβ + Λ̃ft + ũt,

denotes the model for the control units, i.e., ỹt = (y2t, . . . , yNt)
′ , X̃t = (x2t, . . . ,xNt)

′ and Λ̃ =
(γ2, . . . ,γN )′ . Also, since β̂CCE = β +Op

(
N−1/2

)
, thus

ỹt − X̃tβ̂CCE = Λ̃ft + ũt +Op

(
N−1/2

)
,

5Similar restriction has also been imposed in Li and Bell (2017).
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averaging over post-treatment periods yields 1
T1

∑T
t=T0+1 Λ̃ft = 1

T1

∑T
t=T0+1 ẽt + Op

(
T
−1/2
1

)
+

Op
(
N−1/2

)
with ẽt = ỹt − X̃tβ̂CCE . As a result, when (N,T1) → ∞, Σf can be consistently

estimated by Σ̂f = 1
T1

∑T
t=T0+1 ẽt. Finally, for the estimation σ2

u1, we note that from (A.2) that
y0

1t − ŷ0
1t = u1t +Op

(
N−1/2

)
, then following the argument of Li and Bell (2017) and noticing that

δ̂1t = y1t − ŷ0
1t, a potential estimator of σ2

u1 could be

σ̂2
u1 =

1
T1

T∑
t=T0+1

T∑
t=T0+1,|t−s|<l

(
δ̂1t − ∆̂1

)(
δ̂1s − ∆̂1

)
, (14)

where l → ∞ as T1 → ∞ but l
T1
→ 0. For instance, one can choose l = O

(
T

1/3
1

)
(Newey and

West, 1987).
In all, using the above arguments, a consistent estimator for σ2

∆1
can be obtained by

σ̂2
∆1

= σ̂2
u1 + κ1Σ̂′xΣ̂βΣ̂x + κ2Σ̂′f Σ̂ãΣ̂f , (15)

where κ1 = T1
N and κ2 = T1

T0
.

Given the consistent estimator of σ2
∆1

, denoted as σ̂2
∆1
, we can construct the usual t-statistics

as

t∆1 =

√
T1

(
∆̂1 −∆1

)
σ̂∆1

, (16)

which can be used to test hypothesis of whether the treatment is significant, i.e., H0 : ∆1 = 0.
If H0 is not rejected, then there is no significant treatment effects on the treated units for the
policy shock. Otherwise, there is significant treatment effects on the treated units. Furthermore,
given σ̂∆1 , one can also construct the 95% confidence interval for the treatment effects in the
post-treatment periods as

δ̂1t ± 1.96
σ̂∆1√
T1
, for t = T0 + 1, . . . , T.

Remark 3 For the above asymptotic distribution of the ATE ∆̂1, compared to the results of Li
and Bell (2017), we can observe that there is one extra term in the asymptotic variance of ∆̂1,

which is caused by the existence of exogenous regressors xit. As argued above, once β is consistently
estimated and the effects of xit is controlled, then our model is approximately identical to the model
considered by Hsiao et al. (2012). Hence, the results of Li and Bell (2017) can be applied here.

4 Simulation Studies

4.1 Data Generation Processes

Since the true data generating process (DGP) is unknown, the only way to consider which method
is more likely to yield more accurate y0

it in various array of DGPs is through computer simulations.
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We generate four types of DGPs to obtain the ”true” counterfactuals which can never be observed
in reality and compare the true counterfactuals generating by DGPs with estimated counterfac-
tuals obtained by different methods. In the DGPs below, we assume the factors f1t, f2t and f3t

are iidN(0, 1), the factor loadings γ1,i, γ2,i and γ3,i are also iidN(0, 1), unless they are specified
otherwise. The coefficients are set at β1 = 1, and β2 = 2. The specific DGPs are designed as follows.

DGP1: Model with exogenous variables and common factors

yit = x1,itβ1 + x2,itβ2 + γ1,if1t + γ2,if2t + γ3,if3t + uit, (17)

where the covariates xk,it (k = 1, 2) are correlated with common factors as

xk,it = 1 + ρkixk,it−1 + c1iγk,i + c2ifkt + εk,it, k = 1, 2,

where ρk,i ∼ iidU (0.1, 0.9) , c1i and c2i are iidU (1, 2) and the error term εk,it is iidN(0, 1).
DGP2: Model with exogenous variables and common factors

yit = x1,itβ1 + x2,itβ2 + γ1,if1t + γ2,if2t + γ3,if3t + uit. (18)

The covariates xk,it (k = 1, 2) follow an ARMA process as

xk,it = 1 + ρkixk,it−1 + ηk,it + ρηiηk,it−1, k = 1, 2,

where ρk,i and ρηi are iidU (0.1, 0.9) and the error term ηk,it is iidN(0, 1).
DGP3: The DGP is similar to DGP1 except now we assume

f1t = f1,t−1 + ξ1t, (19)

f2t = 0.5f2,t−1 + ξ2t,

f3t = 0.8f3,t−1 + ξ3t,

where ξkt is iidN(0, 1).
DGP4: Model with pure factor structure

yit = γ1,if1t + γ2,if2t + γ3,if3t + uit. (20)

and xk,it is the same as in DGP1.
For these DGPs, we assume the error terms uit are weakly cross-sectionally dependent (Stock

and Watson (2002)), i.e.,

uit = 2vit + vi+1,t + vi−1,t, (21)

vit ∼ iidN(0, σ2
i ),
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where the σ2
i are randomly drawn from 0.5

(
χ2 (1) + 1

)
.

We note that DGP 1 and 3 satisfy the rank condition required for the implementation of Pesaran
(2006)’s CCE method (e.g., Hsiao (2014)), while DGP 4 is a pure factor model, so the rank condition
for the CCE estimation is invalid.

The treatment and control groups consist of 1 and N − 1 units, respectively. The treatment
starts to affect the treated units at time T0 + 1. For these four DGPs, we assume that the control
units to be N − 1 = 30, 50 and the pretreatment time T0 = 30, 50, and post treatment periods
T − T0 = 10, i.e., T = 40, 60. The number of replication is set at R = 1000.

We are also interested in testing whether the ATEs are significant using the asymptotic prop-
erties of the ATE in the previous section. Taking DGP 1 as the base model, we consider two
cases:

Case 1: No Treatment

For the treated unit (the first unit), we assume δ1t = 0 for t = T0 + 1, . . . , T, such that ∆1 = 0.
Case 2: Significant Treatment

For the treated unit (the first unit), we assume δ1t = 2 + t
T for t = T0 + 1, . . . , T, such that ∆1

is different from zero and has an increasing time trend.
For these two cases, we note that there is no treatment effect in Case 1 and there is a significant

treatment effect for Case 2. For the simulation of the significance test of treatment effects, we let
N, T0, and T1 be the combination of 30, 50, and the standard error for the t-statisitics is calculated
using (15)

4.2 Simulation Results

We consider several estimators for the above DGPs,6

(E1) SCM: Generate ŷ0
1t using Abadie et al.’s (2010) SCM method for model (2).7

6We use R software for simulation and estimation. We also use the ”synth” package by Hainmueller and Diamond
(2015) for SCM, the ”gsynth” package by Xu and Liu (2017) for GSCM, the ”pampe” package by Vega-Bayo (2015)
for model selection using AICc, and the ”glmnet” package by Friedman et al (2018) for Lasso, respectively.

7To be more specific, the SCM predict y1t by

ŷ∗1t = w′ỹt =

N∑
i=2

wiyit, T0 + 1 ≤ t ≤ T, (22)

where w = (w2, . . . , wN )′ are obtained by minimizing the distance,√
(M1 −M0w)′V (M1 −M0w), (23)

subject to

y1t =

N∑
i=2

wiyit, 1 ≤ t ≤ T0, x̄1k =

N∑
i=2

wix̄ik, 1 ≤ k ≤ K, (24)

and

wi ≥ 0 and
N∑
i=2

wi = 1, (25)

where M1 and M0 are (T0 + k)× 1 vector and (T0 + k)× (N − 1) matrix of preintervention observations of (y1t, x̄1)′

and (yjt, x̄j) , respectively, x̄j denotes the time series mean of k covariates, xit, and V is a positive definite matrix.
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(E2) GSCM: Estimate model (2) by Bai (2009)’s PCA method.8

(E3) PDX1: Estimate model (2) by the PDX method through ordinary least square, then
generate ŷ0

1t by (11).
(E4) PDX2: Estimate model (2) by the PDX method and use the model selection criterion to

select control units from
(
ỹt − X̃tβ̂CCE

)
in step 2 of (10).

(E5) PDX3: Estimate model (2) by the PDX method and use the Lasso method to select
control units from

(
ỹt − X̃tβ̂CCE

)
in step 2 of (10).

For this estimation E2, since the number of common factors ft is unknown in the estimation,
we follow Xu (2017)’s cross-validation method to estimate the number of common factors, while
the CCE approach for E3-E5 does not require the knowledge of number of common factors.

We consider three criterion for comparison: MAB, MSE and MAP. The MAB9 is the mean
of absolute bias for the true outcome and the counterfactuals at each post-treatment date point.
The MSE10 is the square root of mean of sum of squared bias for the true observation and the
counterfactuals at each post-treatment date point, and the MAP11 is the mean of the ratio of
absolute counterfactuals and absolute true outcomes at each date point after treatment.

We consider the performance of constructing the counterfactuals of y1t (t = T0 + 1, . . . , T ) by
using the approaches E1-E5 using MAB, MSE and MAP. The simulation results are summarized in
Table 1-4 for DGP 1-4, respectively. We also draw the figures of RMSE in Figure 1-4 for different
approaches at each post-treatment period. Based on the asymptotic results we obtained in the
previous section, we can use the usual t-statistics (16) to test whether the treatment effects is
significant for Case 1 and Case 2. We consider two significance levels for double sided test: 1%

8To be more specific, the GSCM contains the following steps.
Step 1: Use all NT observations to estimate β, γi and ft, i = 2, . . . , N and t = 1, . . . , T0, as β̂, γ̂i and f̂t.
Step 2: Estimate γ1 by using variables of treated unit for pretreatment period, t = 1, . . . , T0, as γ̂1 by

min
γ1

T0∑
t=1

(
yit − x′1tβ̂ − γ′1 f̂t

)2

. (26)

Step 3: Generate the estimated counterfactual of y0
1t by

ŷ0
1t = x′1tβ̂ + γ̂′1 f̂t, t = T0 + 1, . . . , T. (27)

9MAB is mearsured as

MAB =
1

RT

R∑
r=1

T∑
t=T0+1

∣∣y0
1t (r)− ŷ0

1t (r)
∣∣

, which represents the average distance between true counterfactuals and estimated counterfactuals by my method.
Thus, the smaller the MAB is, the better performance the method is.

10MSE is calculated by

MSE =

√√√√ 1

RT

R∑
r=1

T∑
t=T0+1

(y0
1t (r)− ŷ0

1t (r))2

which is similar to MAB. The smaller it is, the better performance the method is.
11MAP is measured as

MAP =
1

RT

R∑
r=1

T∑
t=1

∣∣ŷ0
1t (r)

∣∣
|y0

1t (r)|

The closer to 1, the better performance the method is.
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and 5%, and calculate the empirical rejection frequency for the (16) at these two significance levels.
These results are summarized in the Table 5-6, respectively.

Several interesting results can be found in Table 1-4 and Figure 1-4. First and most important,
we can observe that the PDX1-PDX3 works remarkably well across different DGPs and different
configuration of N and T. In general, the counterfactuals of PDX have less bias and MSE than those
obtained from SCM and GSCM approaches. Second, either SCM or GSCM is quite sensitive to the
true DGPs, i.e., when the data are stationary (e.g., DGP1 and DGP2), GSCM works reasonably
well, and when the model is a pure factor model (DGP4), the SCM also works reasonable well.
Finally, for the plot of the square root of mean of sum of squared bias (RMSE) in Figure 1-4, we
can also find that PDX works much better than SCM and GSCM across different DGPs.

The significance test results using the t-statistics of (16) can be found in Table 5-6. When there
is no treatment effect in Case 1, we find that the empirical rejection frequency is quite close to the
nominal value (e.g., 1% or 5%), i.e., there is no evidence to reject the null hypothesis of no significant
treatment effects. When there is significant treatment in Case 2, the empirical rejection frequency
increases quite rapidly with the increase of either N or T1, and most of the cases the empirical
rejection frequency is close to 100%, i.e., we can reject the null of no significant treatment. In all,
the simulation results in Table 1-6 and Figure 1-4 show that our PDX approach works remarkably
well in terms of bias, RMSE and validity of statistical inference.

Table 1. Simulation results of GSCM and PDX for DGP 1

(T,N) N = 30 N = 50

SCM GSCM PDX1 PDX2 PDX3 SCM GSCM PDX1 PDX2 PDX3

MAB 5.322 2.620 5.917 1.534 1.506 4.038 2.477 2.888 2.084 1.971

T = 40 MSE 6.523 3.383 12.284 2.006 2.004 5.079 3.188 3.706 2.716 2.569

MAP 0.363 1.074 1.086 1.028 1.031 0.249 1.083 1.032 1.033 1.041

MAB 3.989 2.389 1.257 1.149 1.133 3.779 2.228 6.972 1.616 1.596

T = 60 MSE 5.007 3.062 1.623 1.508 1.486 4.758 2.840 11.360 2.091 2.044

MAP 0.292 1.081 1.010 1.022 1.019 0.171 1.032 1.034 1.007 1.007

Notes: ”GSCM” to ”PDX3” refers to different estimators described as in (E1)-(E5) respectively.
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Table 2: Simulation results of GSCM and PDX for DGP 2

(T,N) N = 30 N = 50

SCM GSCM PDX1 PDX2 PDX3 SCM GSCM PDX1 PDX2 PDX3

MAB 8.731 2.309 8.278 1.411 1.631 3.665 2.552 3.133 1.512 1.968

T = 40 MSE 10.352 3.215 17.220 1.919 2.227 4.603 3.340 4.009 1.966 2.584

MAP 0.473 1.069 1.146 1.022 1.031 2.627 2.322 1.814 1.485 1.739

MAB 8.773 2.325 1.642 1.252 1.290 3.220 2.057 7.544 1.139 1.251

T = 60 MSE 10.445 3.046 2.122 1.623 1.703 4.060 2.662 12.717 1.480 1.622

MAP 0.478 1.049 1.006 1.007 1.011 1.797 1.754 2.835 1.164 1.213

Notes: ”GSCM” to ”PDX3” refers to different estimators described as in (E1)-(E5) respectively.

Table 3: Simulation results of GSCM and PDX for DGP 3.

(T,N) N = 30 N = 50

SCM GSCM PDX1 PDX2 PDX3 SCM GSCM PDX1 PDX2 PDX3

MAB 6.377 3.770 6.228 1.700 1.648 6.157 3.955 3.044 2.290 2.172

T = 40 MSE 8.717 4.759 10.446 2.226 2.175 7.928 4.994 3.912 2.980 2.818

MAP 1.086 1.656 2.542 1.248 1.155 8.072 5.753 3.545 6.373 4.694

MAB 6.382 4.045 1.388 1.271 1.197 6.911 4.309 6.186 1.789 1.702

T = 60 MSE 8.164 5.144 1.796 1.657 1.565 9.054 5.452 9.605 2.302 2.174

MAP 1.728 1.719 1.239 1.443 1.257 1.096 1.389 1.599 1.146 1.120

Notes: ”GSCM” to ”PDX3” refers to different estimators described as in (E1)-(E5) respectively.

Table 4: Simulation results of GSCM and PDX for DGP 4.

(T,N) N = 30 N = 50

SCM GSCM PDX1 PDX2 PDX3 SCM GSCM PDX1 PDX2 PDX3

MAB 2.277 2.620 5.917 1.534 1.506 2.222 2.477 2.888 2.084 1.971

T = 40 MSE 2.979 3.383 12.284 2.006 2.004 2.880 3.188 3.706 2.716 2.569

MAP 1.884 0.317 13.226 3.207 2.479 2.561 0.492 5.493 3.622 2.915

MAB 2.062 2.389 1.257 1.149 1.133 1.888 2.228 6.972 1.616 1.596

T = 60 MSE 2.677 3.062 1.623 1.508 1.486 2.464 2.840 11.360 2.091 2.044

MAP 2.816 0.468 3.383 3.775 4.960 3.912 0.617 24.738 4.772 4.151

Notes: ”GSCM” to ”PDX3” refers to different estimators described as in (E1)-(E5) respectively.
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Figure 1: RMSE for different approaches when N = 30 and T = 60 for DGP 1
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Figure 2: RMSE for different approaches when N = 30 and T = 60 for DGP 2
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Figure 4: RMSE for different approaches when N = 30 and T = 60 for DGP 4
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Table 5: Empirical Rejection Frequency for Case 1.

1% 5%

N = 30 N = 50 N = 30 N = 50

T0 T1 PDX1 PDX2 PDX3 PDX1 PDX2 PDX3 PDX1 PDX2 PDX3 PDX1 PDX2 PDX3

30 30 0.8% 0.9% 0.6% 1.1% 1.1% 1.0% 3.7% 2.7% 2.3% 5.6% 5.2% 4.7%

50 0.4% 0.6% 0.4% 1.5% 0.4% 0.4% 5.4% 4.6% 3.5% 6.9% 5.9% 6.3%

50 30 0.4% 1.7% 1.1% 1.6% 0.6% 1.2% 1.7% 4.0% 4.2% 5.8% 3.7% 4.7%

50 0.3% 0.4% 0.3% 0.8% 0.9% 0.6% 4.4% 4.1% 4.7% 6.1% 6.3% 5.5%

Table 6: Empirical Rejection Frequency for Case 2.

1% 5%

N = 30 N = 50 N = 30 N = 50

T0 T1 PDX1 PDX2 PDX3 PDX1 PDX2 PDX3 PDX1 PDX2 PDX3 PDX1 PDX2 PDX3

30 30 13.8% 56.1% 59.2% 18.7% 32.5% 31.2% 52.4% 97.4% 99.1% 78.3% 90.6% 91.7%

50 29.5% 87.8% 92.2% 53.2% 70.6% 74.9% 64.2% 99.5% 99.9% 92.4% 98.1% 99.0%

50 30 69.2% 71.7% 75.3% 9.4% 53.2% 56.5% 98.6% 99.8% 99.9% 44.8% 98.8% 98.8%

50 93.1% 97.6% 97.7% 21.9% 84.4% 88.4% 99.6% 100% 99.9% 58.7% 99.7% 99.9%

In general, the simulation results show that (i) using the PDX to generate counterfactuals out-
performs both SCM and GSCM method, and the findings are consistent for data with uncorrelated
and correlated common factors, (ii) using the model selection or Lasso to estimate a and µ will
generate more accurate counterfactuals.

5 Application to Measure the Impact of SYG Law on the State-

Level Murder Rate

In this section, we illustrate the new panel data approach for evaluating the effects of the Stand
Your Ground (SYG) Law on the US state-level murder rate. Since 2005, a wave of U.S. states have
passed laws expanding the circumstances under which individuals have the right to use deadly force
to defend against a threat to their life or property. Such laws increase the number of situations
where citizens are permitted to use deadly force against others. The following Table 7 provides a
summary of when and which state passes the SYG laws.12

12We don’t consider the state of Alaska, which passes the SYG law on 2014, and also delete Utah as the treated
state since Utah passed the similar law on 1994.
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Table 7. State Effective Date for the SYG Law

State Year State Year

Alabama 2007 Arizona 2011
Florida 2006 Georgia 2007
Indiana 2007 Kansas 2011
Kentucky 2007 Louisiana 2007
Michigan 2007 Mississippi 2007
Montana 2010 Nevada 2012
New Hampshire 2012 North Carolina 2012
Oklahoma 2007 Pennsylvinia 2012
South Carolina 2007 South Dakota 2007
Tennessee 2008 Texas 2008
West Virginia 2009

Since the very beginning, there has been numerous proponents argue that such measures can
be expected to deter criminal activities while opponents argue that such laws are likely to increase
homicide rates. A number of recent studies consider different approaches to identify the effect of
SYG laws on homicide rates and find, in general, a positive effect (McClellan and Tekin (2017)
and McClellan and Munasib (2018)). In our paper, we utilize the new panel data approach to
reexamine the effects of SYG law on the state-level murder rate.13 The data of covariates include
per capita income (in logarithm), poverty rate and education attainment, state-level population (in
logarithm). These state-level data are collected from a variety of public sources and merged with
annual state-level murder rates from 1970 to 2015. It can be noted that these covariates are likely
unaffected by the effectiveness of SYG. We let all states that never possess the SYG law during 1970
to 2015 as control states (27 states)14, and consider the treatment effects for the states that passed
the law before 2010 (e.g., Alabama, Florida, Georgia, Indiana, Kentucky, Louisiana, Michigan,
Mississippi, Oklahoma, South Carolina, South Dakota, Tennessee, Texas and West Virginia).

In order to measure the effect of whether SYG increase/decrease murder rate for the treated
states, we consider several approaches (i.e., E(1)-E(5)) to construct the counterfactuals and estimate
the treatment effects. We also consider the average treatment effects over post-treatment period
and are interested in testing whether the ATE is significant for the treated states. The estimation
results are provided in Table 8-10 as well in Figure 5-7 for state of Florida, Mississippi and Louisiana.
The results for other treated states are provided in the Appendix.

From these estimation results, we can find that: (1) The PDX approach (with or without model
selection/Lasso) provides the most accurate prediction in the pretreatment periods, while both the

13We would like to thank Anton Strezhnev for sharing his own SYG data. According to
https://en.wikipedia.org/wiki/List of U.S. states by homicide rate, we find that the data of Murder rate we em-
ployed is the Homicide rate of US.

14The 27 states in control group are Arkansas, California, Colorado, Connectic, Delaware, Hawaii, Idaho, Illinois,
Iowa, Maine, Maryland, Massachusetts, Minnesota, Missouri, Nebraska, New Jersey, New Mexico, New York, North
Dakota, Ohio, Oregon, Rhode Island, Vermont, Virginia, Washington, Wisconsin, and Wyoming.
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SCM and GSCM perform quite bad in the prediction of pretreated periods; (2) For post-treatment
periods, one can observe that SCM and PDX (with or without model selection/Lasso) provide
the similar conclusion that the SYG law in general has a positive effect on the state-level murder
rate. However, the magnitude of the impact varies across different methods. For instance, for the
state of Florida, the ATE for SCM is 1.11, and it is 3.97, 1.43 and 1.46 for PDX1, PDX2 and
PDX3, respectively; (3) The GSCM approach provides quite opposite conclusion for most of the
states with SYG law, except for the state of Louisiana; (4) Using the asymptotics we obtained for
the ATE calculated from PDX, we note that even if the ATEs for PDX (with or without model
selection/Lasso) are positive, while most of the ATEs are insignificant from zero.15

In conclusion, based on the results in Table 8-10, Figure 5-7 and the results in the Appendix,
we can find that the SYG law in general increases the state-level murder rate, while these impacts
could be insignificant based on the t-statistics.

15The possible reason of the nonsignificant treatment effects might be due to that there are not enough data for
the post-treatment periods.
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Table 8: Actual and Counterfactual Murder Rate for Florida in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2006 6.2 5.2 6.3 3.8 5.0 5.0

2007 6.6 4.8 6.5 0.1 3.4 3.8

2008 6.3 4.8 6.7 0.8 4.8 4.5

2009 5.5 4.6 7.2 3.8 4.1 4.7

2010 5.2 4.4 7.6 -0.7 4.4 4.1

2011 5.2 4.3 7.2 0.2 3.5 4.0

2012 5.2 4.1 7.3 3.1 4.9 4.6

2013 5.0 3.9 7.2 1.7 4.1 3.8

2014 4.9 3.9 7.7 1.5 3.0 2.9

2015 5.1 4.1 7.5 1.2 3.8 3.4

ATE 1.11 -1.62 3.97
(0.74)

1.43
(0.91)

1.46
(0.90)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the

significance test of the ATE.

Figure 5. Actual and Counterfactual Murder Rate for Florida
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Table 9: Actual and Counterfactual Murder Rate for Mississippi in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 7.1 8.0 7.4 2.5 7.3 5.5

2008 8.0 7.3 6.1 7.5 5.6 7.9

2009 6.6 9.5 7.6 5.8 5.4 6.1

2010 6.9 6.5 7.4 0.6 4.8 4.1

2011 7.8 7.4 5.9 0.4 4.3 3.6

2012 7.1 5.6 7.1 3.6 4.2 4.2

2013 7.3 5.8 6.3 4.3 6.5 5.6

2014 8.7 4.9 7.1 3.8 4.2 4.3

2015 8.5 5.7 6.2 5.8 4.5 5.9

ATE 0.81 0.76 3.75
(0.70)

2.35
(0.81)

2.31
(0.81)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the

significance test of the ATE.

Figure 6. Actual and Counterfactual Murder Rate for Mississippi
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Table 10: Actual and Counterfactual Murder Rate for Louisiana
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 14.2 9.8 5.8 9.2 12.4 12.1

2008 12.2 8.7 6.4 10.8 12.5 12.4

2009 11.8 7.7 5.4 7.5 10.8 10.7

2010 11.0 7.4 7.4 5.4 10.0 10.7

2011 11.1 6.8 7.2 6.0 10.6 9.5

2012 10.6 6.3 7.2 7.1 8.8 9.5

2013 10.7 6.5 7.2 7.4 9.2 10.0

2014 10.2 6.1 7.7 7.4 8.6 9.2

2015 10.5 9.0 6.4 8.1 9.4 10.9

ATE 3.78 4.64 3.72
(0.73)

1.10
(0.92)

0.80
(0.94)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the

significance test of the ATE.

Figure 7. Actual and Counterfactual Murder Rate for Louisiana
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6 Conclusion

This paper proposes a new panel data approach for program evaluation of social policy. This new
method unifies the idea of Pesaran’s (2006) CCE and Hsiao et al.’s (2012) approach for panel with
IFE models. It provides a semiparametric and data-driven approach of constructing counterfactuals
for the treatment effect at each post-treatment time of the treated unit. Different from the SCM,
the PDX approach doesn’t put any constraints on the outcomes and covariates between the treated
units and control units. Unlike the GSCM approach, the PDX approach does not rely on the
unknown dimension of unobserved factors, and thus the number of unknown parameters involved
could be considerably less than the number involved in the parametric approach of GSCM. It is
evident in the simulations that PDX approach generally outperforms the SCM and GSCM methods
in a variety setup of DGPs, regardless whether N is large or T is large. It is also clear that the
statistical inference is also convincing since the t-statistics based on asymptotics of the ATE using
PDX approach is able to discriminate whether there is significant treatment effect for the treated
units.

We apply the PDX approach to study the impact of US SYG law on state-level murder rate.
We find that, in general, the SYG law increases the state-level murder rate, while these impacts
could be insignificant based on the t-statistics. We should also point out that the conclusion is
quite different across different methods, e.g., the conclusion from GSCM could be on the opposite.
In all, since all methods are based on certain maintained hypotheses, thus the results need to be
interpreted with caution.
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Appendix

The appendix provides the derivations in the main paper and additional estimation results for
the impact of SYG law on state level murder rate.

A Mathematical derivations

Proof of Proposition 1
By definition of ∆̂1 and ∆1, and since δ1t = y1t − y0

1t, we have

∆̂1 =
1
T1

T∑
t=T0+1

δ̂1t =
1
T1

T∑
t=T0+1

(
y1t − y0

1t + y0
1t − ŷ0

1t

)
=

1
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T∑
t=T0+1

(
y1t − y0

1t

)
+

1
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t=T0+1

(
y0

1t − ŷ0
1t

)
= ∆1 +

1
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(
y0

1t − ŷ0
1t

)
. (A.1)

Moreover, we have

y0
1t − ŷ0

1t = x′1tβ + γ ′1ft + u1t −
(
x′1tβ̂CCE + ̂̃a′ (ỹt − X̃tβ̂CCE

))
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(
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+ γ ′1ft − ã′

(
ỹt − X̃tβ̂CCE

)
+
(
ã−̂̃a)′ (ỹt − X̃tβ̂CCE

)
= u1t + x′1t

(
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)
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(
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)
ft +

(
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(
ã− ̂̃a)′ (ỹt − X̃tβ̂CCE

)
. (A.2)

Then under assumption A1-A4 and as (N,T0, T1)→∞, we obtain
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ã− ̂̃a)′ 1

T1

T∑
t=T0+1

(
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where the last equation holds since

β̂CCE = β +Op

(
N−1/2

)
, (A.4a)

from Zhang and Zhou (2016), and

̂̃a = ã +Op

(
T
−1/2
0

)
, (A.5)

by using standard results for OLS estimation with many regressors, i.e., dim (w) = N − 1 is
(moderate) large (e.g., Cattaneo et al (2018a, 2018b)).

Substituting (A.3) into (A.1) yields

∆̂1 = ∆1 +Op
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T
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+Op
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+Op
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,

as required.
Proof of Proposition 2
Using the previous notations, we have
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For the first term of (A.6), using standard argument for CLT (e.g., White (2001)), we obtain

1√
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as T1 →∞, with σ2
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)
under assumption A1.

For the second term, under assumption A1-A4, as (N,T1)→∞, we have
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D =plimN→∞
1
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1
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i=1 X′iMZ̄uiu′iMZ̄Xi (Zhou and Zhang

(2016)).
The last term converges to
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where Σã = V ar
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N
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ã− ̂̃a)) (which can be derived following Cattaneo et al (2018a, 2018b)) and
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Furthermore, we note that the covariance between the second and third term is given by
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by using the facts of (A.4a) and (A.5).
Consequently, substituting (A.7)-(A.10) into (A.6) yields√

T1

(
∆̂1 −∆1

)
d−→ N

(
0, σ2

∆1

)
,

where σ2
∆1

= σ2
u1 + κ1Σ′xΣβΣx + κ2Σ′fΣwΣf . This completes the proof.

B Additional Results for the impact of SYG law on state level

murder rate

This section provides additional empirical results of the treated states for the impact of SYG law
on state level murder rate.
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Table A1: Actual and Counterfactual Murder Rate for Alabama in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 8.9 7.8 5.6 6.0 7.1 7.1

2008 7.6 6.9 5.5 6.6 5.4 6.1

2009 6.8 6.7 6.2 6.1 5.0 5.8

2010 5.7 5.7 6.3 5.4 5.5 5.7

2011 6.2 5.9 5.8 4.0 4.7 5.3

2012 7.1 6.0 6.0 6.1 5.3 5.7

2013 7.2 5.7 6.6 6.0 5.6 5.8

2014 5.7 5.8 6.4 6.2 4.9 5.3

2015 7.2 7.2 5.9 7.0 7.3 7.0

ATE 0.53 0.89 1.00
(0.87)

1.30
(0.83)

0.96
(0.88)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A1. Actual and Counterfactual Murder Rate for Alabama
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Table A2: Actual and Counterfactual Murder Rate for Georgia in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 7.5 6.1 6.2 5.8 6.1 6.0

2008 6.7 5.9 6.7 8.2 6.6 6.4

2009 5.8 5.7 7.6 6.0 5.4 5.6

2010 5.7 5.0 7.7 3.8 5.4 5.0

2011 5.6 5.1 7.5 3.6 4.4 4.4

2012 5.9 5.4 7.4 4.7 5.0 4.7

2013 5.6 5.0 7.5 4.2 5.0 4.5

2014 6.0 5.3 7.0 3.3 3.7 3.5

2015 6.1 5.9 7.3 6.8 5.6 5.3

ATE 0.61 -1.12 0.94
(0.93)

0.86
(0.94)

1.07
(0.92)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A2. Actual and Counterfactual Murder Rate for Georgia
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Table A3: Actual and Counterfactual Murder Rate for Indiana in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 5.6 5.3 5.2 6.5 6.5 5.6

2008 5.0 5.5 5.9 5.6 5.3 5.7

2009 4.9 4.9 6.4 5.3 5.4 5.5

2010 4.1 5.0 6.4 5.4 5.5 5.3

2011 4.7 4.6 6.2 5.9 6.6 5.5

2012 4.7 5.0 6.0 4.9 5.6 5.3

2013 5.4 4.7 6.4 5.8 5.9 5.4

2014 5.0 5.1 5.8 4.3 5.0 5.1

2015 5.6 6.4 5.4 4.8 5.2 5.7

ATE -0.17 -0.97 -0.39
(0.98)

-0.66
(0.96)

-0.45
(0.97)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A3. Actual and Counterfactual Murder Rate for Indiana
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Table A4: Actual and Counterfactual Murder Rate for Kentucky in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 4.8 5.5 5.8 2.3 3.2 3.9

2008 4.7 4.6 6.2 2.9 5.5 5.7

2009 4.3 5.4 6.2 4.5 4.1 3.8

2010 4.3 4.2 6.4 4.0 4.0 3.7

2011 3.5 4.8 5.9 2.1 3.5 3.8

2012 4.6 3.9 6.4 2.2 3.6 3.7

2013 3.9 3.9 7.5 3.7 3.4 3.3

2014 3.7 3.6 6.9 3.8 4.2 4.1

2015 4.9 3.9 6.7 2.5 4.7 4.7

ATE -0.11 -2.15 1.19
(0.90)

0.27
(0.98)

0.22
(0.98)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A4. Actual and Counterfactual Murder Rate for Kentucky
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Table A5: Actual and Counterfactual Murder Rate for Michigan in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 6.7 6.7 5.5 6.5 5.7 5.7

2008 5.5 6.5 6.1 8.0 5.8 6.5

2009 6.2 6.0 6.4 6.8 6.4 6.1

2010 5.9 5.4 6.8 7.0 6.3 6.5

2011 6.2 5.4 6.5 6.0 5.9 5.5

2012 7.1 5.5 6.1 5.5 6.2 5.5

2013 6.3 5.2 5.8 5.6 6.1 5.8

2014 5.5 5.3 6.4 5.6 6.1 5.5

2015 5.9 6.2 5.7 7.2 6.3 6.0

ATE 0.35 -0.00 -0.32
(0.98)

0.05
(0.99)

0.25
(0.98)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A5. Actual and Counterfactual Murder Rate for Michigan
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Table A6: Actual and Counterfactual Murder Rate for Oklahoma in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 6.1 5.6 4.9 4.0 5.2 5.7

2008 5.8 5.4 4.8 3.2 4.6 5.7

2009 6.3 5.3 4.8 1.9 3.2 5.1

2010 5.2 4.6 5.7 2.5 3.6 5.1

2011 5.6 4.9 4.9 0.1 3.4 5.1

2012 5.8 5.1 6.0 3.1 4.3 5.2

2013 5.1 4.7 6.9 4.5 4.5 5.4

2014 4.6 5.0 5.7 3.3 3.6 5.1

2015 6.1 5.7 4.9 5.0 4.2 5.4

ATE 0.48 0.23 2.56
(0.80)

1.55
(0.87)

0.30
(0.98)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A6. Actual and Counterfactual Murder Rate for Oklahoma
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Table A7: Actual and Counterfactual Murder Rate for South Carolina in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 8.0 8.0 5.5 6.1 6.7 7.1

2008 6.8 7.0 5.4 8.8 8.8 7.2

2009 6.7 6.8 5.4 7.8 5.8 6.2

2010 5.7 5.8 6.3 5.7 5.4 6.0

2011 6.8 6.0 6.8 5.9 4.6 5.6

2012 7.0 6.0 6.1 6.5 5.4 5.4

2013 6.4 5.8 6.9 5.5 4.5 5.1

2014 6.7 5.9 6.0 7.7 5.9 5.5

2015 8.3 7.4 5.4 8.8 8.9 7.3

ATE 0.41 0.95 -0.05
(0.99)

0.72
(0.94)

0.77
(0.94)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A7. Actual and Counterfactual Murder Rate for South Carolina
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Table A8: Actual and Counterfactual Murder Rate for South Dakota in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2007 2.1 2.3 1.7 2.5 1.3 1.5

2008 4.6 1.2 2.6 0.2 2.2 2.0

2009 3.7 2.0 3.0 0.7 1.4 1.7

2010 2.8 1.6 2.8 3.7 2.0 1.8

2011 2.4 3.3 2.9 1.7 1.9 2.0

2012 2.8 3.3 2.5 1.2 2.0 1.9

2013 2.1 2.2 2.6 2.8 1.9 1.8

2014 2.7 2.9 2.5 2.0 2.2 1.9

2015 3.8 2.7 2.7 2.5 2.8 2.2

ATE 0.60 0.41 1.08
(0.91)

1.04
(0.91)

1.14
(0.91)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A8. Actual and Counterfactual Murder Rate for South Dakota
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Table A9: Actual and Counterfactual Murder Rate for Tennessee in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2008 6.6 5.9 6.0 4.5 5.5 6.2

2009 7.4 6.5 6.5 5.6 5.2 5.7

2010 5.6 5.2 6.5 3.3 5.5 5.9

2011 6.0 5.6 6.3 3.9 4.7 5.4

2012 6.2 5.1 6.9 4.9 5.5 5.7

2013 5.2 4.8 6.1 5.5 6.0 5.8

2014 5.6 4.7 6.5 4.6 5.2 5.2

2015 6.3 5.1 5.8 5.7 6.7 6.8

ATE 0.76 -0.22 1.36
(0.89)

0.57
(0.96)

0.29
(0.98)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A9. Actual and Counterfactual Murder Rate for Tennessee
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Table A10: Actual and Counterfactual Murder Rate for Texas in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2008 5.6 5.6 7.9 6.3 7.1 6.0

2009 5.4 5.2 8.4 7.1 6.5 5.8

2010 4.9 4.7 8.7 6.1 7.6 5.9

2011 4.4 4.8 8.3 7.6 7.5 6.2

2012 4.4 4.9 8.1 7.9 7.5 5.9

2013 4.3 4.4 8.1 6.1 7.0 5.6

2014 4.4 4.4 7.9 7.0 7.1 5.2

2015 4.8 4.7 7.4 6.0 6.1 4.4

ATE -0.06 -3.33 -2.00
(0.88)

-2.28
(0.87)

-0.83
(0.95)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A10. Actual and Counterfactual Murder Rate for Texas
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Table A11: Actual and Counterfactual Murder Rate for West Virginia in the Post-treatment Period
Year Actual SCM GSCM PDX1 PDX2 PDX3

2009 4.6 4.0 4.8 3.1 3.7 4.0

2010 3.1 3.1 5.1 2.7 4.0 4.1

2011 4.7 3.9 5.2 3.3 3.3 3.8

2012 3.8 4.0 5.0 2.8 3.4 3.7

2013 3.3 3.6 5.8 2.5 3.3 3.6

2014 4.5 4.0 6.0 3.1 3.6 3.7

2015 4.6 4.2 4.3 4.3 4.3 4.2

ATE 0.26 -1.09 0.96
(0.91)

0.43
(0.96)

0.21
(0.98)

Note: ATE is calculated over Post-treatment Periods. The number in parenthesis shows p-value of the
significance test of the ATE.

Figure A11. Actual and Counterfactual Murder Rate for West Virginia
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