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Abstract

In this paper, we provide a simple approach to identify and estimate group structure in panel
models by adapting the M-estimation method. We consider both linear and nonlinear panel models
where the regression coefficients are heterogeneous across groups but homogeneous within a group
and the group membership is unknown to researchers. The main result of the paper is that
under certain assumptions, our approach is able to provide uniformly consistent group parameter
estimator as long as the number of groups used in estimation is not smaller than the true number
of groups. We also show that, with probability approaching one, our method can partition some
true groups into further subgroups, but cannot mix individuals from different groups. When the
true number of groups is used in estimation, all the individuals can be categorized correctly
with probability approaching one, and we establish the limiting distribution for the estimates
of the group parameters. In addition, we provide an information criterion to choose the number
of group and established its consistency under some mild conditions. Monte Carlo simulations
are conducted to examine the finite sample performance of our proposed method. Findings in the
simulation confirm our theoretical results in the paper. Application to labor force participation also
highlights the necessity to take into account of individual heterogeneity and group heterogeneity.
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1. Introduction

Panel data models are widely used in empirical research of both economics and finance. An impor-
tant feature to use panel data is that it allows researchers to control individual-level heterogeneity.
Unfortunately, most of these heterogeneity, however, is unobservable, e.g., willingness to pay for
education, impact of economic policy, personal innate ability, etc. In practice, there are two op-
posite approaches to deal with this individual level heterogeneity. The first one is to completely
ignore the heterogeneity among individuals by assuming common parameters across individuals,
see, e.g., Lancaster (2002), Hahn and Newey (2004), Arellano and Bonhomme (2009). Indeed, this
approach reduces the model complexity and facilitates statistical inference. However, this common
parameters assumption might be too strong in practice and may lead to model misspecification:
see, e.g., Hsiao (2014). Moreover, this assumption has also been found to be too restrictive in many
empirical studies, see, for example, Hsiao and Tahmiscioglu (1997) and Lee et al. (1997), among
others. The other approach is to allow cross-sectional slope heterogeneity, e.g., Hsiao and Pesaran
(2008), Baltagi et al. (2008). This assumption helps avoid misspecification problem; however, it
may lose latent connections between individuals and efficiency of estimation. To be more specific,
if part of the individuals share a common parameter, it sacrifices this essential connection and
leads to estimators with larger variance.

To allow such a possibility that part of the individuals shares a common parameter, a mild and
reasonable assumption is to impose group structure in panels. Group structure in panels refers to
the regression parameters that are the same within each group but differ across groups.1 Recently,
group structure in panels has received lots of attention in the literature both empirically and
theoretically. To name a few, for linear model, Lin and Ng (2012) consider liner panel model with
group structure on both intercept and slope. When there are only two groups and one regressor,
they propose a threshold based estimation method to identify the latent group structure and
show that the estimator is consistent. Under the same setup of Lin and Ng (2012), Sarafidis
and Weber (2015) propose a modified k-means algorithm to determine the number of clusters
and estimate parameters. Bonhomme and Manresa (2015) consider the linear panel data models
with a latent group structure on the time-varying individual-specific effects and propose a group
fixed effects estimator. The work of Bonhomme and Manresa (2015) has been extended to models
with interactive fixed effects and nonlinear panel models by Ando and Bai (2016) and Bester and
Hansen (2016), respectively. More recently, Su et al. (2016) propose a classifier Lasso (C-Lasso)
penalized procedure to identify and estimate panels with group structure.

Following the work of Lin and Ng (2012) and Su et al. (2016), this paper proposes a simple
and straightforward method to identify and estimate panels with group structure when the true
number of groups and the membership are both unknown. The method we proposed can be

1There is another type of group pattern in the literature, Bonhomme and Manresa (2015) and Bester and Hansen
(2016) consider the case when the individual-specific effects exhibit certain group pattern.
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applied to both linear and nonlinear panels. Besides the simplicity, the proposed method has
several advantages as follows.

First, the major theoretical contribution of this paper is that we show, under certain assump-
tions, the consistency of our proposed estimation is independent of the number of groups used
as long as this number is not underestimated. The important practical implication of this result
is that for estimation of the regression coefficients, one does not necessarily need to estimate the
number of groups correctly as long as this number is not underestimated. The implication of this
result is that a safe way in estimating the panel model with an unknown group structure is to
set a slight large number of groups. This is of crucial importance to researchers since generally
speaking, the number of groups in the data is usually unknown. We also show that, with prob-
ability approaching one, our method can partition some true group into further subgroups, but
cannot misclassify individuals from different groups into the same group. When the true number
of groups is used in estimation, all the individuals can be categorized correctly with probability
approaching one.

Second, once the group membership is correctly identified and estimated, our proposed estima-
tion performs similarly to the estimation based on true (or oracle) group membership. This oracle
property allows one to combine exsiting estimation and inference technique with our method, for
instance, for the classified group units, one can adapt the jackknife method in Hahn and Newey
(2004) or Dhaene and Jochmans (2015) to reduce the bias for fixed effects estimation in both
linear and nonlinear panels.

Finally, unlike the C-Lasso approach proposed by Su et al. (2016), which relies on the choice
of tuning parameter, our approach is penalty free if the number of group is specified as a prior,
which is a significant advantage for empirical application. It is well known in the literature that
Lasso type methods are able to consistently select variables. However, the consistency of variable
selection highly depends on the right choice of the tuning parameter (e.g., Chand (2012) and Kirk-
land et al. (2015)). Therefore, in empirical applications, the estimation results may be sensitive
to the choice of tuning parameters, and how to choose the optimal tuning parameter in C-Lasso
is still an open question. Consequently, it would be convenient to have a penalty free approach to
identify the group structure in panels, and our proposed method serves this purpose.

The rest of the paper is organized as follows. In Section 2, we first introduce fixed effects
model with unknown group structure, and then propose an estimation and classification proce-
dure. Asymptotic properties of our estimator are established in Section 3. Section 4 carries out a
set of Monte Carlo simulations to investigate the finite sample performance of our method. An
application to labor force participation is provided in Section 5. Conclusion is made in Section 6.
All mathematical derivation of main theorems and lemmas are provided in the appendix.

Notation: For any squared matrix A, let λmin(A), λmax(A) be the smallest and largest eigen-
values of A. ∥A∥2 denotes the Frobenius norm as ∥A∥2 =

√
tr(AA′). For any positive integer k,

define [k] ∈ [N ] := {1, 2, ..., k}. P−→ and D−→ denote convergence in probability and in distribution,
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respectively. Finally, (N,T ) → ∞ denotes N and T go to infinity jointly.

2. Panel Data Model with Misspecified Groups

Let Yit be a real-valued observation and Xit ∈ Rp be a real vector of observed covariates, both
collected on the ith individual at time t for i ∈ [N ] := {1, 2, . . . , N}, t ∈ [T ] := {1, 2, . . . , T}.
Assume that the N individuals are actually belonging to G0 underlying groups where G0 is
unknown. In particular, G0 = 1 corresponds to the traditional fixed effect model without group
structure (see Hahn and Newey (2004)). To identify group structure, a common practice is to
predetermine the number of groups, denoted G, and classify the N individuals into G groups.
In practice, correctly specifying G, i.e., G = G0, is difficult due to the unobservability of group
pattern. A more realistic way is to pick G relatively large so that G ≥ G0. Obviously, such
misspecification brings more challenges into both theoretical study and practical applications. In
this paper, we propose a method for identifying group patterns under this misspecification and
investigate its asymptotic property.

For individual i, let gi ∈ [G] := {1, 2, . . . , G} denote the group membership variable, βgi ∈ K ⊂
Rp denote the unobservable group-specific parameter, and αi ∈ A ⊂ R denote the unobservable
individual-specific parameter, where both K and A are compact subsets. If individuals i, j belong
to the same group, then βgi = βgj , i.e., they share a common group parameter, but αi and αj might
still be different due to individual-level heterogeneity. Let β = (β1, β2, . . . , βG) ∈ KG denote the
tuple of G group-specific parameters, α = (α1, α2, . . . , αN ) ∈ AN denote the N -vector of individual
parameters, and γN = (g1, g2, . . . , gN ) ∈ ΓN denote the N -vector of group membership variables,
where ΓN = [G]N is the class of all possible group assignments. Our aim is to estimate the triplet
θN = (β, α, γN ) which can be performed through the following M -estimation:

θ̂N = argmax
θN=(β,α,γN )∈ΘN

1

NT

N∑
i=1

T∑
t=1

ψ(Xit, Yit, βgi , αi), (2.1)

where ΘN = KG × AN × ΓN denotes the entire parameter space, ψ(Xit, Yit, βgi , αi) denotes the
logarithm of the pseudo likelihood function of Yit given Xit under parameters βgi , αi.

Unlike the C-Lasso approach proposed by Su et al. (2016), our M -estimation procedure (2.1)
requires optimizing the objective function over the pre-regularized parameter space ΘN where the
parameters βgi therein naturally incorporate group constraint. This important feature avoids the
delicate choice of penalty parameters as required by penalization-based methods. Various choices
of the function ψ will be provided in the following Examples 1, 2 and 3.

Example 1. Linear panel model: Yit = β′giXit + αi + ϵit, 1 ≤ i ≤ N , 1 ≤ t ≤ T , where ϵit’s
represent the idiosyncratic error. In this case, one chooses ψ(x, y, β, α) = −(y − β′x− α)2.

Example 2. Binary choice panel model: Yit = 1(β′giXit + αi ≥ ϵit), 1 ≤ i ≤ N , q ≤ t ≤ T , where
ϵit’s represent the idiosyncratic error with common distribution function F , and 1(·) denotes the
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indicator. In this case, we choose ψ(x, y, β, α) = y logF (β′x+ α) + (1− y) log(1− F (β′x+ α)).

Example 3. Poisson panel model: Given Xit and under βgi , αi, Yit follows Poisson distribution
with mean exp(β′giXit+αi). In this case, we can choose ψ(x, y, β, α) as the Poisson density function
with mean exp(β′x+ α).

Due to the complex structure of the parameter space ΘN , it is challenging to directly solve
(2.1). Instead, we introduce an efficient iterative algorithm. Before that, let us introduce some
notation to simplify writing. Define

Hi(β, α) = E(ψ(Xi1, Yi1, β, α)), Ĥi(β, α) =
1

T

T∑
t=1

ψ(Xit, Yit, β, α),

ΨN (θN ) = ΨN (β, α, γN ) =
1

N

N∑
i=1

Hi(βgi , αi), Ψ̂N (θN ) = Ψ̂N (β, α, γN ) =
1

N

N∑
i=1

Ĥi(βgi , αi).

HereHi is the expected objective function for individual i, ΨN (θN ) is the expected pooled objective
function taking into account the group variables, Ĥi and Ψ̂N (θN ) are their respective sample
versions. Under these notation, (2.1) can be rewritten as

θ̂N = argmax
θN∈ΘN

1

N

N∑
i=1

Ĥi(βgi , αi). (2.2)

We propose the following iterative algorithm to solve (2.2):

(a) Choose initial estimators (β(0), α(0)).
(b) For each i ∈ [N ], in the sth iteration , find g(s+1)

i = argmax
g∈[G]

Ĥi(β
(s)
g , α

(s)
i ). Then set γ(s+1)

N =

(g
(s+1)
1 , . . . , g

(s+1)
N ) and compute (β(s+1), α(s+1)) = argmax

(β,α)∈KG×AN

Ψ̂N (β, α, γ
(s+1)
N ).

(c) Repeat (b) until the solution converges.

The following simple procedure is recommended to choose the initial estimators. For each
i ∈ [N ], let β̂ML

i ’s and α̂ML
i ’s be the pseudo maximum likelihood estimators of β0i ’s and α0

i ’s based
on {Xit, Yit}Tt=1, i.e., (β̂ML

i , α̂ML
i ) = argmax

β∈K,α∈A
Ĥi(β, α). Firstly, we choose α(0) = (α̂1, α̂2, . . . , α̂N ).

Next, one applies the standard k-means algorithm with k = G to β̂ML
i ’s to get G clustering

centers, say, (β(0)1 , . . . , β
(0)
G ). Finally, let β(0) = (β

(0)
1 , . . . , β

(0)
G ) to be initial estimators for iteration.

In Monte Carlo simulations, we find this initial estimator works well and leads to a very fast
convergence.

3. Asymptotic theory

In this section, we prove several asymptotic results such as estimation consistency (Theorems 1
and 2) and classification consistency (Theorem 3). It is worthful to point out that such results even
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hold under a misspecified G with G ≥ G0. As a byproduct, we provide a consistent procedure to
determine the number of groups. Moreover, asymptotic normality for the estimators is established
with a correctly specified G. Throughout this section, let θ0N = (β0, α0, γ0N ) denote the true
parameters under which the observations Xit, Yit are generated, where β0 = (β01 , β

0
2 , . . . , β

0
G0),

α0 = (α0
1, α

0
2, . . . , α

0
N ), and γ0N = (g01, g

0
2, . . . , g

0
N ).

3.1. Estimation Consistency

The main result of this section is to show that the proposed M -estimation is consistent. Before
stating our main theorems, let us introduce some technical conditions. To start, for each g ∈ [G0],
we define Ng =

∑N
i=1 I(g

0
i = g), i.e., the true number of individuals from group g.

Assumption A1. (a) {Xit, Yit}Tt=1 are mutually independent across i ∈ [N ].
(b) For each i ∈ [N ], {Xit, Yit : t ∈ [T ]} is stationary and α-mixing with mixing coefficients

αi(·). Moreover, α(τ) := max1≤i≤N αi(τ) satisfies α(τ) ≤ exp(−C0τ
b0), where C0 > 0 and

b0 > 0 are constants.
(c) For each i ≥ 1, Hi(β, α) is uniquely maximized at (β0

g0i
, α0

i ) and, for any ϵ > 0,

χ(ϵ) := inf
i≥1

inf
∥β−β0

g0
i

∥22+|α−α0
i |2≥ϵ

[Hi(β
0
g0i
, α0

i )−Hi(β, α)] > 0.

(d) d0 ≡ inf g̃ ̸=g ∥β0g − β0g̃∥2 > 0.
(e) There is a non-negative function Q(x, y) such that for all (β, α), (β̌, α̌) ∈ K× A,

|ψ(x, y, β, α)− ψ(x, y, β̌, α̌)| ≤ Q(x, y)(∥β − β̌∥22 + |α− α̌|2)1/2,

and |ψ(x, y, β, α)| ≤ Q(x, y) for all (β, α) ∈ K×A. Furthermore, there exist b1 ∈ (0,∞] and
B1 > 0 such that

sup
i∈[N ]

P (Q(Xi1, Yi1) > v) ≤ exp

(
1− (v/B1)

b1

)
, for all v > 0.

(f) For all g ∈ [G0], there exists a positive constant πg such that Ng/N → πg as (N,T ) → ∞.

Remark 1. Assumption A1.(a) assumes cross-sectional independence among the individuals
which is standard for panel data, e.g., Lee and Phillips (2015) and Su et al. (2016). Assump-
tion A1.(b) imposes weak dependence for the observations along the time dimension with the level
of dependence controlled by an exponential bound with parameter b0. The stationarity assumption
can be relaxed at cost of introducing more notation. A similar α−mixing condition can be found
in Su et al. (2016) and Bonhomme and Manresa (2015). Assumption A1.(c) is an identification
condition, which can be verified case by case under certain mild conditions. The same condition
was also assumed by Hahn and Newey (2004) and Hahn and Moon (2010). Assumption A1.(d)
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says that the pairwise differences between the group parameters are bounded from below. This con-
dition is needed to guarantee the identification of the group parameters. Similar conditions were
also assumed by Bonhomme and Manresa (2015) and Su et al. (2016). Assumption A1.(e) states
that ψ is smooth satisfying certain exponential tail condition with decay rate of the tail probability
characterized by b1. When ψ is a bounded function, then we can choose B1 = 2∥ψ∥∞ and b1 = ∞.
Similar tail condtions are also assumed by Bonhomme and Manresa (2015) for the error term.
Compared with other conditions such as moment conditions, the exponential tail condition can
lead to better convergence results and is still valid in commonly used models such as Examples 1,
2 and 3. Assumption A1.(f) excludes the groups with zero proportion. This condition is standard
and necessary for panel models with finte number of groups, e.g., see Bonhomme and Manresa
(2015) and Su et al. (2016).

Let d = b0b1/(b0b1 + b0 + b1). Since b0 and b1 characterize the weak dependence of the obser-
vations and decay rate of the tail probability, respectively, as discussed in Remark 1, d can be
viewed as a quantity jointly controlling both. A special case is b1 = ∞, i.e., ψ is bounded, where
we have d = b0/(1 + b0) < 1.

Assumption A2. logN = o(T
d

1+d ).

Remark 2. For theoretical consideration, compared to the standard assumption on the rate of N
and T in the literature where the ratio of T/N being a nonnzero constant(e.g., Hahn and Newey
(2004) among others), Assumption A2 is a relatively weak condition, since Assumption A2 allows
N to diverge exponentially faster than T , where the ratio of T/N goes to zero. Furthermore,
Assumption A2 is also quite reasonable in practice, since most microeconomic datasets are with
moderate large T and very large N .

In order to prove the consistency of θ̂N , we introduce the following pseudo metric dN on ΘN .
For any θN = (β, α, γN ), θ̃N = (β̃, α̃, γ̃N ) ∈ ΘN , define

dN (θN , θ̃N ) =
1

N

N∑
i=1

(
∥βgi − β̃g̃i∥2 + |αi − α̃i|

)
.

Specifically, dN (θN , θ̃N ) measures the average discrepancy of (βgi , αi)’s and (β̃g̃i , α̃i)’s. Theorem
1 below proves consistency for θ̂N under this pseudo metric.

Theorem 1. Suppose G ≥ G0 and Assumptions A1 and A2 hold. Then dN (θ̂N , θ
0
N )

P−→ 0 as
(N,T ) → ∞.

Theorem 1 establishes the consistency results for the parameter set θN including the slope
coefficients and fixed effects. If the parameters of interest are slope coefficients, then it is easy to
see that

1

N

N∑
i=1

∥β̂ĝi − β0g0i
∥2

P−→ 0 as (N,T ) → ∞.
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In other words, the estimators of the group parameters are consistent only in an “average” sense,
and it is possible that a small proportion of β̂ĝi ’s may still be inconsistent. In Theorem 2, we
can strengthen this result by showing that β̂ĝi ’s are uniformly consistent without any additional
assumption.

Theorem 2. Suppose G ≥ G0 and Assumptions A1 and A2 hold. Then sup1≤i≤N ∥β̂ĝi −
β0
g0i
∥2

P−→ 0 as (N,T ) → ∞.

Theorem 2 states that the estimators of all group parameters uniformly converge to the true
group parameters. Again, both Theorems 1 and 2 only require G ≥ G0. If G < G0, then the above
results will be invalid since in this scenario, individuals from different groups need to be classified
into the same group, and this will lead to inconsistency.

3.2. Detection of Group Structure among Individuals

Detection of group structure in panel data is a fundamentally important problem. The popular
C-LASSO approach recently proposed by Su et al. (2016) requires the use of penalty for effec-
tively classifying the individuals. In this section, we study our penalty-free grouping method and
investigate its asymptotic property. Our theory and method are valid under G ≥ G0.

Recall that γ̂N = (ĝ1, ĝ2, . . . , ĝN ) is the estimator of the group membership variables obtained
in (2.2). Our grouping method is simply based on ĝi’s as follows. For g ∈ [G], define Ĉg = {i ∈
[N ] : ĝi = g}, i.e., Ĉg is the collection of the individuals belonging to the g-th estimated group.
Also define C0

g = {i ∈ [N ] : g0i = g} for g ∈ [G0], i.e., C0
g is the population analogy based on the

true group membership variables. It is important to provide the conditions under which such a
simple grouping method is valid, that is, for any g ∈ [G], there exists a g̃ ∈ [G0] such that Ĉg ⊆ C0

g̃

with probability approaching one. Formal statement of this result is provided in Theorem 3. Such
property implies that the individuals are correctly grouped.

To prove this result, we need stronger assumptions on the smoothness of ψ. In order to deal with
partial derivatives of a multivariate function, we introduce the following multi-index notation.
Let k = (k1, k2, . . . , kp+1) denote a multi-index, where kl’s are non-negative integers. For any
β ∈ K ⊂ Rp, denote β = (β[1], β[2], . . . , β[p]), where β[l] is the lth coordinate of β. Define the kth
order partial derivative of ψ(x, y, β, α) with respect to β, α as follows:

Dkψ(x, y, β, α) =
∂|k|ψ(x, y, β, α)

∂βk1[1] . . . ∂β
kp
[p]∂α

kp+1

,

where |k| = k1 + k2 + · · ·+ kp+1. Also denote the Hessian of ψ and Hi (with respect to β, α) by

ψ̈(x, y, β, α) =

(
∂2ψ(x,y,β,α)

∂β∂β′
∂2ψ(x,y,β,α)

∂β′∂α
∂2ψ(x,y,β,α)

∂β∂α
∂2ψ(x,y,β,α)

∂α2

)
, Ḧi(β, α) = E(ψ̈(Xi1, Yi1, β, α)).
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We require the following conditions on the partial derivatives of ψ and Hessian of Hi’s. Let
Bi = {(β, α) ∈ K× A : ∥β − β0

g0i
∥2 + |α− α0

i | ≤ a0} for i ≥ 1, and B = ∪i≥1Bi.

Assumption A3. (a) There exist some function J(x, y), constant a0 > 0 and integer q0 ≥ 4

such that for any k with |k| ≤ 4 and (β, α) ∈ B,

|Dkψ(x, y, β, α)| ≤ J(x, y), sup
i≥1

EJq0(Xi1, Yi1) <∞.

(b) The Hessian matrices {Ḧi(β
0
g0i
, α0

i ), i ≥ 1} are negative definite with the largest eigenvalues
uniformly bounded by zero, i.e., supi≥1 λmax(Ḧi(β

0
g0i
, α0

i )) < 0.

Remark 3. Assumption A3.(a) requires higher-order smoothness and finite q0th moment on the
objective function ψ to guarantee correct classification. Similar assumption has been made by Hahn
and Newey (2004) and Su et al. (2016). Assumption A3.(b) requires the Hessian matrices of the
expected objective function to be uniformly negative definite. It can be compared to the conditions
on the Hessian matrices of the profiled objective function in Su et al. (2016).

Below is the main result of this section which provides the classification consistency of our
grouping method even under G ≥ G0.

Theorem 3. Suppose G ≥ G0 and Assumptions A1-A3 hold. Then for each g ∈ [G], there
exists a g̃ ∈ [G0] such that lim(N,T )→∞ P

(
Ĉg ⊆ C0

g̃

)
= 1.

Remark 4. Theorem 3 demonstrates that the proposed grouping method is valid under misspecifi-
cation in the sense that, with probability approaching one, any grouped individuals asymptotically
belong to a population group. This implies that any population group is either identical to a se-
lected group or is partitioned into subgroups without any misclassification, which is possibly the
best result one can expect under G ≥ G0. In the special case G = G0, Theorem 3 naturally leads to
classification consistency, i.e., upto a proper relabeling, with probability approaching one, Ĉg = C0

g

for any g ∈ [G0]. Classification consistency was also established by Su et al. (2016) when G = G0.

Remark 5. Intuitively, Theorem 3 implies that under Assumptions A1-A3 and if G > G0, then
with probability approaching one: (i) individuals from the same group may be divided into different
subgroups; (ii) individuals from different groups can not be categorized into the same group.

Remark 6. The implication of Theorem 3 is that, since the true number of groups is unknown
in practice, it is safe to use a relative large number of groups to classify the data and to obtain
consistent estimation. Otherwise, if G < G0, different from both Theorems 2 and 3, neither the
estimation nor the classification is consistent.

3.3. Determination of Number of Groups

Though our estimation and classification results are valid for misspecified G, it is still of interest
to estimate the number of groups. In this section, we propose an efficient approach based on
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penalization to address this problem and establish its theoretical validity. Let θ̂GN be the estimator
in (2.2) using G as the number of groups. To estimate G0, we define a penalized criterion function

PC(G) = Ψ̂N (θ̂
G
N )− ηNTG,

where ηNT > 0 is a penalty parameter that is used to exclude the extremely large and unlikely
choice of G. We estimate G0 based on following procedure:

Ĝ = argmax
G∈[Gmax]

PC(G), (3.1)

where Gmax is a predetermined upper bound for G. The following theorem shows that Ĝ is
consistent, i.e., Ĝ = G0 with high probability.

Theorem 4. Suppose Assumptions A1 and A3 hold. If logN = o(T
d

2(1+d) ), ηNTT
1

2(1+d) → ∞
and ηNT → 0, then lim(N,T )→∞ P (Ĝ = G0) = 1.

Note that the rate condition logN = o(T
d

2(1+d) ) in Theorem 4 is slightly stronger than Assump-
tion A2, though both conditions allow N to grow exponentially with T . One can check by using
the fact d < 1 that the choice ηNT ≍ T−1/4 fulfills the rate conditions in Theorem 4.

3.4. Asymptotic Normality

In this section, we study the asymptotic normality of β̂ under G = G0. For this, we introduce the
following “oracle” estimator β̃ of β when the true group assignment γ0N is known. Specifically, let

β̃ = argmax
β∈KG0

max
αi∈A

1

N

N∑
i=1

Ĥi(βg0i
, αi).

Of course, β̃ is infeasible since γ0N is practically unavailable. Interestingly, β̃ and β̂ are in fact
asymptotically equivalent as summarized in the following lemma.

Lemma 1. Suppose G = G0 and Assumptions A1-A3 hold. Under appropriate relabeling, it
holds that lim(N,T )→∞ P (β̂ = β̃) = 1.

It can be seen from Lemma 1 that, to derive the asymptotic normality of β̂, it is sufficient to
derive the asymptotic normality of β̃. To achieve the latter, we make an additional Assumption
A4. Before that, let us introduce some notation. Define

ρi = E−1(
∂2ψ

∂α∂α
(Xi1, Yi1, β

0
g0i
, α0

i ))E(
∂2ψ

∂β∂α
(Xi1, Yi1, β

0
g0i
, α0

i )),

Ui(x, y, β, α) =
∂ψ

∂β
(x, y, β, α)− ρi

∂ψ

∂α
(x, y, β, α), Ri(x, y, β, α) =

∂ψ

∂α
(x, y, β, α),

Vi(x, y, β, α) =
∂Ui
∂β′

(x, y, β, α), Ii = E(Vi(Xi1, Yi1, β
0
g0i
, α0

i )).
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The above notation are standard in the literature of nonlinear panel models, e.g., Hahn and
Newey (2004) and Arellano and Hahn (2007). To simplify writing, we introduce the following no-
tation: Uαi = ∂Ui/∂α, Uααi = ∂2Ui/∂α

2, Uit = Ui(Xit, Yit, β
0
g0i
, α0

i ) and Uαit = Uαi (Xit, Yit, β
0
g0i
, α0

i ).
We define Rit, Rαit analogically. For each i ≥ 1, let Λi denote the asymptotic covariance matrix of∑T

t=1 Uit/
√
T as T → ∞, which has an expression

Λi = E(UitU
′
it) + 2

∞∑
t=1

E(Ui1U
′
i,1+t).

Convergence of the above series holds uniformly for i due to Assumptions A1 and A3.

Assumption A4. (a) There exists a constant 0 < B3 < 1 such that

B3 ≤ inf
i≥1

λmin(Λi) ≤ sup
i≥1

λmax(Λi) ≤ 1/B3.

Moreover, for each g ∈ [G0], there exist positive definite matrices Dg and Wg such that

lim
N→∞

∑
i:g0i =g

Λi/Ng = Dg and lim
N→∞

∑
i:g0i =g

Ii/Ng =Wg.

(b) For each g ∈ [G0], there exists a vector ∆g ∈ Rp such that

lim
(N,T )→∞

1

NgT

∑
i:g0i =g

E

{( ∑T
t=1Rit√
TE(Rαi1)

)(
1√
T

T∑
t=1

[Uαit −
E(Uααi1 )

2E(Rαit)
Rit]

)}
= ∆g.

Remark 7. Assumption A4.(a) requires that the eigenvalues of the covariance matrices Λi are
bounded away from zero and infinity. Assumption A4.(b) is a common condition for handling
asymptotic bias (see Hahn and Newey (2004) and Arellano and Hahn (2007) for similar condi-
tions).

As the main result of this section, Theorem 5 shows that the elements of β̂ are asymptotically
normally distributed.

Theorem 5. Suppose G = G0 and Assumptions A1, A3, A4 hold and N/T → κ for some
κ ≥ 0. Then under appropriate relabeling, as (N,T ) → ∞, for each g ∈ [G0],

√
NT (β̂g − β0g )−

√
N/TW−1

g ∆g
D−→ N(0, π−1

g W−1
g DgW

−1
g ),

As a consequence, under appropriate relabeling, for each g ∈ [G0],

√
NT (β̂g − β0g )

D−→ N(

√
κπ−1

g W−1
g ∆g, π

−1
g W−1

g DgW
−1
g ),

Remark 8. Theorem 5 is closely related to a number of work on panel data models with fixed
effects. First, the asymptotic bias of β̂g is of order O(

√
N/T ). For fixed effects model, Hahn

and Newey (2004) derived the same order for the asymptotic bias of the fixed effects estimator.
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In particular, β̂ becomes asymptotically unbiased when N = o(T ). Second, when {Xit, Yit : i ∈
[N ], t ∈ [T ]} are independent, the bias term has an expression:√

κπ−1
g W−1

g ∆g =

√
κπ−1

g W−1
g lim

N→∞

1

Ng

∑
i:g0i =g

(
E(Ri1U

α
i1)

E(Rαi1)
− E(Uααi1 )E(|Ri1|2)

2E2(Rαi1)

)
.

For fixed effects model without group structure, i.e., πg = Ng/N = 1, the above expression co-
incides with Arellano and Hahn (2007). When T = o(N), the bias of β̂g tends to infinity. This
issue can be resolved by adapting the jackknife procedure proposed by Hahn and Newey (2004) and
Dhaene and Jochmans (2015) into our M-estimation procedure.

4. Monte Carlo Simulation

In order to evaluate the finite-sample performance of the classification and estimation procedure,
following Su et al. (2016), we consider three data generating processes (DGPs) that cover both
linear and nonlinear panels of static and dynamic models. Throughout these DGPs, we generate
the fixed effect αi and the idiosyncratic error uit are I.I.D N (0, 1) across i and t. Moreover uit is
also independent of all regressors. We set the number of groups to be three (e.g., G0 = 3), and the
number of elements in each group are given by N1 = ⌊0.3N⌋ , N2 = ⌊0.3N⌋ and N3 = N−N1−N2,
where N is the total number of cross-sectional units and ⌊·⌋ denotes the integer part of ”·”.

DGP 1 (Linear panel model): The data is generated as

yit = αi +X ′
itβgi + uit, (4.1)

where Xit = (0.2αi + eit,1, 0.2αi + eit,2)
′ and eit,1, eit,2 ∼ I.I.DN (0, 1) across i, t and are indepen-

dent of αi. The true coefficients are (0.4, 1.6), (1, 1), (1.6, 0.4) for the three groups, respectively.
DGP 2 (Linear dynamic panel model): The data is generated as

yit = αi (1− γgi) + γgiyit−1 +X ′
itβgi + uit, (4.2)

where Xit is a 2 × 1 vector of exogenous variables following two dimensional standard normal
distribution. The true coefficients are (0.4, 1.6, 1.6), (0.6, 1, 1), (0.8, 0.4, 0.4) for the three groups,
respectively.

DGP 3 (Dynamic Panel Probit model):

yit = 1 (γgiyit−1 + xitβ1,gi + β2,gi + αi > uit) , (4.3)

where xit = 0.1αi+eit with eit ∼ I.I.D N (0, 1) and is independent of all other variables. The true
coefficients are (1,−1, 0.5), (0.5, 0,−0.25), and (0, 1, 0). It should be noted that γgi and β1,gi are
identifiable in this model, whereas β2,gi is unidentifiable because it is absorbed into the individual
specified effects αi.
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For all the three DGPs, we consider the combinations of (N,T ) with N = (100, 200) and
T = (15, 25, 50). During the replication, the group membership is held fixed. The number of
replication is set to be R = 1000. Since the goal of this paper is consistently estimate the regression
coefficients, group membership and number of groups, we follow Su et al. (2016) to consider the
following three criteria to examine the finite sample performance of the proposed M-estimation.

(1) We use the algorithm to determine the number of groups and then estimate the parameters
through M-estimation procedure. For the estimation of parameters, the estimators are evaluated
using the root mean squared error (RMSE) for each estimated group number G defined as2

RMSE =

√√√√ 1

N

N∑
i=1

∥β̂ĝi − β0
g0i
∥22.

When G = G0, we also consider another type RMSE similar to Su et al. (2016), defined as

Group RMSE =

√√√√ 1

G0

G0∑
g=1

∥β̂g − β0g∥22.

(2) Frequency or empirical percentage of selecting the number of groups for a given true number
of groups (G0 = 3 in our designs).

(3) Classification, which is the percentage of correct classification. It is calculated as the per-
centage of correct classification of the N units, calculated as

∑N
i=1 I(ĝi = g0i )/N under appropriate

relabelling, averaged over the Monte Carlo replications.
Simulation results of DPGs 1-3 are summarized in Tables 1-3. Several interesting findings can

be observed in Tables 1-4. First, Table 1 provides the RMSE for the proposed M-estimation using
different number of groups with G0 = 3. As we show in Theorem 2, our M-estimation procedure
can lead to consistent estimator as long as G ≥ G0. From Table 1, we can observe that the RMSE
decreases rapidly with the increase of either N or T , which is evident that the M-estimation is
consistent. Moreover, as shown by Table 2, the group RMSE also decreases with the increase of N
and T , and performs similarly to the oracle estimator (e.g., knowing the true group membership),
which is consistent with our findings in Theorems 1-2. Second, Table 3 summarizes the accuracy
of determination of number of groups using the criterion PC(G) proposed in Section 3.3. We
note that throughout all our designs of both linear and nonlinear panels, the determination of
number of groups using the proposed algorithm is very accurate in the sense that the percentage
of choosing the true number of groups is quite close to 1 with the increase of either N or T .
Finally, Table 4 presents the simulation results of correct classification and group RMSE. For the
correctness of classification, we can observe that with the increase of N and T , the algorithm we
proposed is able to provide very accurate classification for both linear and nonlinear panels, which

2We don’t compare the performance of C-LASSO by Su et al. (2016) with ours in the simulation. The main
reason is that we are unclear of the choice of tuning parameters of C-LASSO when G is different from G0.
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is evident that the classification is consistent as shown in Theorem 3. In all, we can claim that
the simulation results confirm our theoretical findings in this paper regarding the identification
and estimation for panels with unknown group structure under misspecification.

Table 1
RMSE under G = 3, 4, 5 with G0 = 3.

DGP1 DGP2 DGP3
N T 3 4 5 3 4 5 3 4 5

100 15 0.190 0.217 0.234 0.141 0.166 0.184 0.296 0.512 0.571
100 25 0.113 0.140 0.157 0.078 0.104 0.118 0.190 0.256 0.277
100 50 0.036 0.068 0.083 0.035 0.052 0.064 0.119 0.173 0.182
200 15 0.188 0.214 0.233 0.136 0.158 0.174 0.286 0.381 0.399
200 25 0.109 0.136 0.153 0.076 0.098 0.112 0.185 0.240 0.261
200 50 0.032 0.065 0.080 0.027 0.048 0.060 0.116 0.162 0.176

Table 2
Bias and RMSE of DGPs 1-3 with G0 = 3

DGP1 DGP2 DGP3
Bias GRMSE Bias GRMSE Bias GRMSE

N T estimate oracle estimate oracle estimate oracle estimate oracle estimate oracle estimate oracle
100 15 0.023 0.012 0.070 0.048 0.066 0.029 0.060 0.040 0.020 0.008 0.180 0.135
100 25 0.016 0.009 0.042 0.037 0.055 0.021 0.039 0.031 0.006 0.003 0.110 0.091
100 50 0.007 0.004 0.034 0.025 0.032 0.013 0.033 0.020 0.006 0.003 0.077 0.066
200 15 0.025 0.014 0.050 0.036 0.073 0.031 0.043 0.038 0.013 0.003 0.125 0.094
200 25 0.016 0.009 0.031 0.026 0.059 0.023 0.031 0.029 0.006 0.003 0.080 0.068
200 50 0.006 0.003 0.021 0.018 0.033 0.013 0.022 0.018 0.003 0.002 0.054 0.047

Note: ”estimate” refers to estimation based estimated group membership, ”oracle” refers to estimation using the
true group membership, i.e., g0i .

Table 3
Percentage of choosing G = 1, 2, . . . , 5 with G0 = 3.

DGP1 DGP2 DGP3
N T 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

100 15 0 0.004 0.976 0.02 0 0 0 0.484 0.366 0.15 0 0.081 0.612 0.262 0.045
100 25 0 0 0.996 0.004 0 0 0 0.94 0.058 0.002 0 0.058 0.810 0.128 0.004
100 50 0 0 0.988 0.012 0 0 0 0.984 0.016 0 0 0.007 0.895 0.098 0
200 15 0 0 0.996 0.004 0 0 0 0.658 0.246 0.096 0 0.063 0.705 0.221 0.011
200 25 0 0 1 0 0 0 0 0.942 0.058 0 0 0.011 0.881 0.106 0.002
200 50 0 0 1 0 0 0 0 0.996 0.004 0 0 0.002 0.932 0.066 0

Table 4
Percentage of correct classification with G0 = 3

N T DGP1 DGP2 DGP3
100 15 0.902 0.926 0.883
100 25 0.934 0.978 0.949
100 50 0.966 0.989 0.979
200 15 0.903 0.932 0.883
200 25 0.967 0.980 0.949
200 50 0.995 0.998 0.980
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5. Empirical Application

In this section, we apply the above estimation and classification method to study the women’s
labor force participation. The dataset comes from Panel Study of Income Dynamics (PSID) and
contains 1461 married women for 10 calendar years 1979-1988. We consider the following dynamic
panel binary choice model with fixed effects

yit = 1
(
αi + γgiyit−1 + x′itβgi + εit > 0

)
where yit takes value one if woman i participate in period t and zero otherwise, αi and δt represent
individual specific effects and time effects, respectively. Other independent variables are xit =

(#childrenit, logincomeit, race , eduwife, agewife and agewife2), where #childrenit is the number
of children aged between 0 and 17, logincome is the log of husband’s labor income deflated by
Consumer Price Index, race is an indicator function and takes value 1 for black, eduwife is the
years of education of woman, agewife is the age of women (divided by 10) and agewife2 is squared
age. Similar variables are also considered by Hyslop (1999) and Carro (2007).

Using the classification method in the previous section, we are able to divide the original sample
into two groups, i.e., G = 2. The summary statistics for the original sample and two groups are
provided in Table 5. From Table 5, we can observe that these two groups have quite distinct
observations for some variables. For example, comparatively, individuals in group 2 have more
children, lower percentage of black race and younger age, while, individuals in group 1 have more
years of education. The difference in these two groups make a lot of difference in the estimation.
Furthermore, based on the grouping, we can note that, on average, individuals from group 2 have
much higher tendency to join the labor market comparing with individuals from group 1, e.g.,
the mean of labor force participation rate is 0.7898 for individuals from group 2 and is 0.3982 for
group 1.

For the estimated group membership, we apply the fixed effects logit regression for each group
and the whole sample. The estimation results are summarized in Table 6. Several interesting
findings can be observed in the above estimation. First of all, we note that the effects of variables
of previous year’s labor force participation, husband’s income and wife’s age remain the same
across the whole sample and two groups, even if the effects are quite different across different
groups. Second, we note that race has negative effects on the labor force participation in the
whole sample and group 1, while race is no longer significant in group 2. From the summary
statistics, we note that group 2 has relative low percentage of race black, which indicates that
effects of race is offset by other variables in this group. Finally, we observe that education of wife is
not significant in the whole sample and group 1, while it is significant in group 2, which indicates
that education indeed has positive significant effect on the labor force participation for individuals
in group 2. In all, we can conclude that, in order to capture the individual heterogeneity and group
heterogeneity, it would be of crucial importance to classify individuals into different groups instead
of pooling all individuals in the same group.
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Table 5
Summary statistics for the original sample and two groups

Whole sample Group1 Group2
Variables min mean max min mean max min mean max

yit 0 0.5743 1 0 0.3982 1 0 0.7898 1
#children 0 1.76 7 0 1.691 6 0 1.841 7
logincome 5.806 10.471 13.846 5.806 10.483 12.995 6.64 10.46 13.85

Race 0 0.1642 1 0 0.1788 1 0 0.1471 1
eduwife 5 12.05 18 5 12.13 18 5 11.95 18
agewife 1.8 3.557 6.3 1.9 3.671 6.2 1.8 3.424 6.3
agewife2 3.24 13.41 39.69 3.61 14.25 38.44 3.24 12.43 39.69

Table 6
Logit estimation for the whole sample and two groups

Variable Whole sample Group1 Group2
yit-1 2.0504*** 2.1779*** 0.8835***

(0.0683) (0.0841) (0.1044)
#children 0.00001 -0.0395 -0.0915**

(0.0295) (0.0401) (0.047)
logincome -0.1933*** -0.2408*** -0.1787**

(0.0472) (0.0615) (0.0814)
Race -0.1735** -0.1938* 0.1215

(0.0842) (0.1135) (0.1412)
eduwife 0.0096 0.0088 0.0257**

(0.0082) (0.0118) (0.0126)
agewife 1.2635*** 1.8465*** 2.6434***

(0.2977) (0.4133) (0.4523)
agewife2 -0.161*** -0.2297*** -0.3097***

(0.0386) (0.0534) (0.0598)
Note: *, **, *** refer to significance at 10%, 5% and 1% level, respectively.

6. Conclusion

In this paper, we consider the identification and estimation of panel models with group structure
when the true number of group and the group membership are unknown to researchers. We pro-
pose an M-estimation procedure to estimate the parameters of interest and a information criterion
function to determine the number of groups. The method we proposed is applicable to both linear
and nonlinear panels. Asymptotic properties are established for the estimation and classification
as well as the determination of number of groups. As a major theoretical contribution, we show
that under certain assumptions, the consistency of our proposed estimation and classification pro-
cedure is independent of the number of groups used in estimation as long as this number is not
underestimated. The important practical implication of this result is that for estimation on the
slope coefficients, one does not necessarily need to estimate the number of groups consistently.
Monte Carlo simulations are conducted to examine the finite sample properties of the proposed
method, and simulation results confirm our theoretical findings. Application to labor force par-
ticipation also highlights the necessity to take into account of individual heterogeneity and group
heterogeneity.
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APPENDIX

This supplement includes the mathematical proofs that are omitted in the main paper. We first
provide the proof of the main theorems and then present the relevant lemmas that are used in
proving these theorems.

A.1. Proofs of main theorems

This section contains proofs of main theorems. To proceed further, we introduce some notation
as follows. For fixed β ∈ K, define

α̂i(β) ≡ argmax
α∈A

Ĥi(β, α),

and for β ≡ (β1, β2, . . . , βG) ∈ KG, define

γ̂N (β) ≡ argmax
γN∈ΓN

max
α∈AN

Ψ̂i(β, α),

with (ĝ1(β), ĝ2(β), . . . , ĝN (β)) being the elements in γ̂N (β). Let

SNT = sup
1≤≤N

sup
β∈K,α∈A

|Ĥi(β, α)−Hi(β, α)|,

then under certain assumptions, Lemma A.7 shows that SNT = oP (1), which plays an important
role in our proof. Moreover, definition of Ψ̂ suggests the following inequality:

sup
θn∈ΘN

|Ψ̂(θN )−Ψ(θN )| = sup
(β,α,γN )∈K×A×ΓN

∣∣∣∣ 1N
N∑
i=1

(
Ĥi(βgi , αi)−Hi(βgi , αi)

)∣∣∣∣
≤ SNT .

To compare (β̂1, β̂2, . . . , β̂G) and (β01 , β
0
2 , . . . , β

0
G0) with possibly G ̸= G0, we define map σ : [G0] →

[G] such that:
σ(g) = argmin

g̃∈[G]
∥β̂g̃ − β0g∥2, for g ∈ [G0]. (A.1)

Proof of Theorem 1. First by definition of θ̂N , we have

ΨN (θ
0
N )− SNT = Ψ̂N (θ

0
N ) ≤ Ψ̂N (θ̂N ) ≤ ΨN (θ̂N ) + SNT ≤ ΨN (θ

0
N ) + SNT .

Above inequality and Lemma A.7 shows that

ΨN (θ̂N )−ΨN (θ
0
N ) = oP (1). (A.2)

In the following, we will use contradiction argument to prove the result. Assume dN (θ̂N , θ0N ) → 0

fails to hold. There is a sub sequence (Nk, Tk) of (N,T ) and c0 > 0 such that P{dNk
(θ̂Nk

, θ0Nk
) ≥



/ 20

c0} ≥ c0 for all large enough k. W.L.O.G, we can assume P{dN (θ̂N , θ0N ) ≥ c0} ≥ c0 for all large
enough (N,T ). Define event ANT = {dN (θ̂N , θ0N ) ≥ c0}. By Lemma A.4 and Lemma A.7, we have

ΨN (θ
0
N )−ΨN (θ̂N ) ≥ [ΨN (θ

0
N )−ΨN (θ̂N )]I(ANT )

≥ c0
2R

χ(c20/8)I(ANT ).

So let ϵ0 = c0χ(c
2
0/8)/(4R) and it holds that

lim inf
(N,T )→∞

P (ΨN (θ
0
N )−ΨN (θ̂N ) ≥ ϵ0) ≥ lim inf

(N,T )→∞
P (

c0
2R

χ(c20/8)I(ANT ) ≥ ϵ0)

= lim inf
(N,T )→∞

P (ANT ) ≥ c0 > 0,

which is a contradiction to (A.2). Proof completed.

Lemma A.1. Suppose Assumptions A1, A2 hold and G ≥ G0, then for each g ∈ [G0],

∥β̂σ(g) − β0g∥2 = oP (1).

Proof of Lemma A.1. By Theorem 1, we have for any g ∈ [G0]

∥β̂σ(g) − β0g∥2 =
1∑N

i=1 I(g = g0i )

N∑
i=1

I(g = g0i )∥β̂σ(g0i ) − β0g0i
∥2

(By definition of σ)

≤ 1

Ng

N∑
i=1

I(g = g0i )∥β̂ĝi − β0g0i
∥2

≤ N

NNg

N∑
i=1

∥β̂ĝi − β0g0i
∥2

(By Assumption A1.(f))

≤ [
1

πg
+ o(1)]dN (θ̂N , θ

0
N ) = oP (1).

Proof of Theorem 2 . First notice ∥β̂σ(g0i ) − β0
g0i
∥2 ≤ ∥β̂ĝi − β0

g0i
∥2 and Ĥi(β̂σ(g0i )

, α̂(β̂σ(g0i )
)) ≤

Ĥi(β̂ĝi , α̂(β̂ĝi)). By definition of SNT , we have

Hi(β̂σ(g0i )
, α̂(β̂σ(g0i )

))− SNT = Ĥi(β̂σ(g0i )
, α̂(β̂σ(g0i )

))

≤ Ĥi(β̂ĝi , α̂(β̂ĝi))

= Hi(β̂ĝi , α̂(β̂ĝi)) + SNT .

So it follows that

sup
1≤i≤N

(
Hi(β̂σ(g0i )

, α̂(β̂σ(g0i )
))−Hi(β̂ĝi , α̂(β̂ĝi))

)
≤ 2SNT . (A.3)
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Next we will prove the convergence result by contradiction. Assume sup1≤i≤N ∥β̂ĝi − β0
g0i
∥2 → 0

in probability fails to hold. Then W.L.O.G, there exist ϵ0 > 0 such that P (sup1≤i≤N ∥β̂ĝi −
β0
g0i
∥2 ≥ ϵ0) ≥ ϵ0 for (N,T ) is large enough, otherwise we can take subsequence. Let event

ANT = {sup1≤i≤N ∥β̂ĝi − β0
g0i
∥2 ≥ ϵ0}. By Assumption A1.(c), we have

sup
1≤i≤N

(
Hi(β

0
g0i
, α0

i )−Hi(β̂ĝi , α̂(β̂ĝi))

)
≥ sup

1≤i≤N

(
Hi(β

0
g0i
, α0

i )−Hi(β̂ĝi , α̂(β̂ĝi))

)
I(ANT )

≥ χ(ϵ20)I(ANT ). (A.4)

And by Lemma A.5, it follows that,

sup
1≤i≤N

(
Hi(β

0
g0i
, α0

i )−Hi(β̂σ(g0i )
, α̂(β̂σ(g0i )

))

)
≤ sup

1≤i≤N
B2

(
∥β̂σ(g0i ) − β0g0i

∥22 + |α̂(β̂σ(g0i ))− α0
i |2
)1/2

≤ sup
1≤i≤N

B2

(
∥β̂σ(g0i ) − β0g0i

∥2 + |α̂(β̂σ(g0i ))− α0
i |
)
. (A.5)

Next we will bound two terms in above inequality respectively. For first term in (A.5), by Lemma
A.1 and direct examination, we have

sup
1≤i≤N

∥β̂σ(g0i ) − βg0i
∥2 = sup

1≤i≤N

G0∑
g=1

I(g0i = g)∥β̂σ(g0i ) − βg0i
∥2

= sup
1≤i≤N

G0∑
g=1

I(g0i = g)∥β̂σ(g) − βg∥2

≤
G0∑
g=1

∥β̂σ(g) − βg∥2 = oP (1). (A.6)

For second term, combing (A.6) and Lemma A.8, we have

sup
1≤i≤N

|α̂(β̂σ(g0i ))− α0
i | = oP (1). (A.7)

Hence it follows from (A.5), (A.6) and (A.7) that

sup
1≤i≤N

(
Hi(β

0
g0i
, α0

i )−Hi(β̂σ(g0i )
, α̂(β̂σ(g0i )

))

)
= oP (1) (A.8)

Combining (A.3), (A.4), (A.8) and Lemma A.7, we have

χ(ϵ20)I(ANT )

≤ sup
1≤i≤N

(
Hi(β

0
g0i
, α0

i )−Hi(β̂ĝi , α̂(β̂ĝi))

)
≤ sup

1≤i≤N

(
Hi(β

0
g0i
, α0

i )−Hi(β̂σ(g0i )
, α̂(β̂σ(g0i )

))

)
+ sup

1≤i≤N

(
Hi(β̂σ(g0i )

, α̂(β̂σ(g0i )
))−Hi(β̂ĝi , α̂(β̂ĝi))

)
= oP (1),
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which leads to a contradiction of Assumption A1.(c) and P (ANT ) ≥ c0 for all large enough
(N,T ).

Before proving Theorem 3, we will introduce some notation. Define a η-neighborhood of θ0N
by Nη = {β ∈ KG : maxg̃∈[G]ming∈[G0] ∥βg̃ − β0g∥2 < η}. Also for each β ∈ Nη, we define sets
Aη(β, g) = {g̃ ∈ [G] : ∥βg̃ − β0g∥2 < η} ⊂ [G], for all g ∈ [G0]. Here Aη(β, ·) plays a role of
relabelling that connect labels in [G0] with labels in [G].

Proof of Theorem 3. First we will prove the following claim: for sufficient small η > 0, with
probability approaching one, {Aη(β̂, g), g ∈ [G0]} is a partition of [G] and each Aη(β̂, g) is non
empty for all g ∈ [G0]. To see this, by Theorem 2, we have with probability approaching one,
β̂ ∈ Nη. Therefore, by definition, each Aη(β̂, g) is not empty. Moreover, the uniformly convergence
in Theorem 2 also implies ∪G0

g=1Aη(β̂, g) = [G]. Now we remain to show that with probability
approaching one, {Aη(β̂, g), g ∈ [G0]} is a partition of [G]. Let event ANT = {Exsits g12 ∈
Aη(β̂, g1)∩Aη(β̂, g2) for some distinct g1, g2 ∈ [G0]}. Assume above claim fails to hold, then there
exists ϵ0 > 0 such that P (ANT ) ≥ ϵ0 for all (N,T ) is sufficiently large. On event ANT ∩{β̂ ∈ Nη},
there exist some g12 ∈ [G], g1, g2 ∈ [G0] such that g12 ∈ Aη(β̂, g1) ∩ Aη(β̂, g2). As a consequence,
for η < d0/2 and by Assumption A1.(d), it follows that,

d0 ≤ ∥β0g1 − β0g2∥2 ≤ ∥β̂g12 − β0g1∥2 + ∥β̂g12 − β0g2∥2 < 2η < d0.

which is a contradiction, since P (ANT ∩ {β̂ ∈ Nη}) ≥ ϵ0/2 for all (N,T ) that is sufficiently large.
Now we prove the claim.

Next by Lemma A.16 and the fact that with probability approaching one, β̂ ∈ Nη, we have

lim
(N,T )→∞

P
(
ĝi ∈ Aη(β̂, g

0
i ),∀i ∈ [N ]

)
= 1.

Finally, suppose i, j ∈ Ĉg for some g ∈ [G], then ĝi = ĝj = g. From argument above, we can
see, with probability approaching one, g ∈ Aη(β̂, g

0
i ) and g ∈ Aη(β̂, g

0
j ). Notice with probability

approaching one, {Aη(β̂, g), g ∈ [G0]} is a partition of [G], so it follows that g0i = g0j . Now define
g̃ = g0i = g0j ∈ [G0], then i, j ∈ Cg̃. Therefore, with probability approaching one, for each g ∈ [G],
there exist g̃ ∈ [G0], such that Ĉg ⊂ Cg̃.

Proof of Theorem 4. It suffices to show

lim
(N,T )→∞

P (PC(G) ≤ PC(G0)) = 1. (A.9)

Now we consider two cases, namely G < G0 and G > G0.
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Under fitting case, G < G0: By direct examination and Lemma A.19 , for (N,T ) is large enough,
it follows that

PC(G0)− PC(G) = Ψ̂N (θ̂
G0

N )− Ψ̂N (θ
0
N )− Ψ̂N (θ̂

G
N ) + Ψ̂N (θ

0
N )− ηNT (G

0 −G)

≥ Ψ̂N (θ
0
N )− Ψ̂N (θ̂

G
N )− ηNT (G

0 −G)

= ΨN (θ
0
N )−ΨN (θ̂

G
N )− ηNT (G

0 −G) + op(1)

≥ B4/2 + oP (1). (A.10)

Since ηNT → 0, it follows from (A.10) that (A.9) holds for the case G < G0.
Over fitting case, G > G0: By Lemma A.21, it follows that

PC(G0)− PC(G) = Ψ̂N (θ̂
G0

N )− Ψ̂N (θ
0
N )− Ψ̂N (θ̂

G
N ) + Ψ̂N (θ

0
N ) + ηNT (G−G0)

= Op(T
− 1

2(1+d) ) + ηNT (G−G0). (A.11)

Since ηNTT
1

2(1+d) → ∞ and G > G0, so (A.9) holds for the case when G > G0.

Proof of Lemma 1. Suppose G = G0, then by Theorem 3, under appropriate relabelling, it follows
that for each g ∈ [G0],

lim
(N,T )→∞

P (Ĉg = Cg) = 1.

And above equation implies that

lim
(N,T )→∞

P (ĝi = g0i , ∀i ∈ [N ]) = 1.

Since on the event {ĝi = g0i ,∀i ∈ [N ]}, we have β̂ = β̃. Therefore, we finish the proof.

Lemma A.2. Suppose Assumptions A1, A3, A4 hold and N = O(T ), then for all g ∈ [G0]√
NgT (β̃g − β0g )−

√
Ng/TW

−1
g ∆g

D−→ N(0,W−1
g DgW

−1
g ).

Proof of Lemma A.2. By Lemma A.9, it follows that

1

NgT

N∑
i:g0i =g

T∑
t=1

Vi(Xit, Yit, β
0
g , α

0
i ) =

1

NgT

∑
i:g0i =g

Ii + oP (1). (A.12)

By definition of β̃g, we find that

1

NgT

∑
i:g0i =g

T∑
t=1

Ui(Xit, Yit, β̃g, α̂i(β̃g)) = 0. (A.13)

Apply the same argument in Lemma A.10, we can show that the following term will uniformly
converge to its expectation for all i ≥ 1,( ∑T

t=1Rit√
TE(Rαi1)

)(
1√
T

T∑
t=1

[Uαit −
E(Uααi1 )

2E(Rαit)
Rit]

)
. (A.14)
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Combining Assumption A4.(b), (A.12), (A.12) and Lemma A.18, we have following equation,

1√
NgT

∑
i:g0i =g

T∑
t=1

Ui(Xit, Yit, β
0
g , α

0
i ) = [

1

Ng

∑
i:g0i =g

Ii]
√
NgT (β̃g − β0g )

+
√
Ng/T [∆g + oP (1)]

+oP (
√
NgT∥β̃g − β0g∥2) + oP (

√
Ng/T ). (A.15)

Since N = O(T ) by assumption, (A.15) shows the asymptotic distribution of β̃g is contributed by

[
1

Ng

∑
i:g0i =g

Ii]−1 1√
NgT

∑
i:g0i =g

T∑
t=1

Ui(Xit, Yit, β
0
g , α

0
i ). (A.16)

Next we will derive the asymptotic distribution of (A.16) by Lyapunov C.L.T and Cramer-Wold
device. For any u ∈ Rp, define ζTi =

∑T
t=1 u

′Ui(Xit, Yit, β
0
g , α

0
i )/

√
T . By Lemma A.9 and Lemma

A.3, for some constant Cu ≥ 0 depending on u, we have∑
i:g0i =g

E(ζ3i ) ≤ NgCu. (A.17)

Direct examination implies

s2Ng
≡

∑
i:g0i =g

E(ζ2i )

=
∑
i:g0i =g

u′E

( T∑
t=1

Ui(Xit, Yit, β
0
g , α

0
i )

T∑
t=1

U ′
i(Xit, Yit, β

0
g , α

0
i )

)
u/T (A.18)

Thanks to Lemma A.10 and Assumption A4.(a), we can show that

lim
(N,T )→∞

s2Ng
/Ng = u′Dgu. (A.19)

Combining (A.17), (A.18), (A.19) and Assumption A4.(a), we have

lim
(N,T )→∞

∑
i:g0i =g

E(ζ3i )

s3Ng

= lim
(N,T )→∞

NgCu(
Ngu′Dgu

)3/2

≤ lim
(N,T )→∞

NgCu(
NgB3∥u∥22

)3/2
= 0. (A.20)

By (A.19), (A.20) and Lyapunov C.L.T., for any u ∈ Rp, we have

u′√
NgT

∑
i:g0i =g

T∑
t=1

Ui(Xit, Yit, β
0
g , α

0
i )

D−→ N(0, u′Dgu).
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Since u is arbitrary, by above equation and Assumption A4.(a), it follows that√
NgT (β̃g − β0g )−

√
Ng/TW

−1
g ∆g

D−→ N(0,W−1
g DgW

−1
g ).

Proof of Theorem 5. The asymptotic distribution follows from asymptotic equivalence in Lemma
1 and Lemma A.2.

A.2. Proof of relevant lemmas

This section contains proofs of relevant lemmas for proving the main theorems. Set

R = sup
β1,β2∈K,α1,α2∈A

∥β1 − β2∥2 + |α1 − α2|.

Lemma A.3. Under Assumption A1 and A3, there exists a non negative function J̃(x, y) such
that for all (β1, α1), (β2, α2) ∈ Bi, i ≥ 1 and all |k| ≤ 3,

|Dkψ(x, y, β, α)−Dkψ(x, y, β, α)| ≤ J̃(x, y)(∥β1 − β2∥22 + |α1 − α2|2)1/2,

|Dkψ(x, y, β, α)| ≤ J̃(x, y),

and
sup
i≥1

E(J̃q0(Xi1, Yi1)) <∞.

Proof of Lemma A.3. This is a consequence of Assumption A1.(a) and mean value theorem.

Lemma A.4. Under Assumption A1, the inequality

inf
dN (θN ,θ

0
N )≥ϵ

[ΨN (θ
0
N )−ΨN (θN )] ≥

ϵ

2R
χ(ϵ2/8)

holds for every 0 < ϵ < R.

Proof. Fix 0 < ϵ < R, let θN and θ0N satisfy

dN (θN , θ
0
N ) =

1

N

N∑
i=1

[∥βgi − β0g0i
∥2 + |αi − α0

i |] ≥ ϵ.

Then the cardinality k of the set of indices A = {i ∈ [N ] : ∥βgi − β0
g0i
∥2 + |αi−α0

i | ≥ ϵ/2} satisfies
the inequality (N − k)ϵ/2+ kR ≥ NdN (θN , θ

0
N ) ≥ Nϵ. From this we conclude k ≥ Nϵ/(2R− ϵ) ≥

Nϵ/(2R). The inequality (a+ b)2 ≤ 2a2 + 2b2 and Assumption A1.(c) yield

[ΨN (θ
0
N )−ΨN (θN )] ≥

1

N

∑
i∈A

[Hi(β
0
g0i
, α0

i )−Hi(βgi , αi)] ≥
k

N
χ(ϵ2/8) ≥ ϵ

2R
χ(ϵ2/8).

By taking infimum on above inequality, the desired result follows.
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Lemma A.5. Under Assumption A1, the following Lipchitz condition holds

sup
i≥1

sup
(β1,α1 )̸=(β2,α2)∈K×A

|Hi(β1, α1)−Hi(β2, α2)|
(∥β1 − β2∥22 + |α1 − α2|2)1/2

≤ B2,

with B2 =
∫∞
0 exp

(
1− (t/B1)

b1
)
dt if 0 < b1 <∞ and B2 = B1 if b1 = ∞.

Proof of Lemma A.5. The desired result is valid when d1 = ∞. Now it suffices to show the case
when d1 <∞. In the view of Assumption A1.(e), we have

sup
i≥1

E

(
Q(Xi1, Yi1)

)
≤

∫ ∞

0
sup
i≥1

P

(
Q(Xi1, Yi1) > t

)
dt

≤
∫ ∞

0
exp

(
1− (t/B1)

b1

)
dt <∞.

Combining above inequality with Jensen’s inequality and A1.(e), it follows that

sup
i≥1

sup
(β1,α1 )̸=(β2,α2)∈K×A

|Hi(β1, α1)−Hi(β2, α2)|
(∥β1 − β2∥22 + |α1 − α2|2)1/2

≤ sup
i≥1

sup
(β1,α1 )̸=(β2,α2)∈K×A

E

(
|ψ(Xi1, Yi1, β1, α1)− ψ(Xi1, Yi1, β1, α1)|

(∥β1 − β2∥22 + |α1 − α2|2)1/2

)
≤ sup

i≥1
E

(
Q(Xi1, Yi1)

)
≤ B2.

Proof completes.

Lemma A.6. Let Zt, t ∈ [T ] be a sequence of stationary variables with zero mean such that
α(t) ≤ exp(−C0t

b0) and P (|Zt| > z) ≤ exp1−(z/B1)b1 . Furthermore, if E(Z2
1 )+2

∑∞
t=1E(Z1Z1+t) ≤

M , then

P

(
1

T

∣∣∣∣ T∑
t=1

Zt

∣∣∣∣ > z

)
≤ 4

(
1 +

T
1

1+d z2

16M

)−T
d

1+d /2

+
16L1

z
exp

(
− L2T

d
1+d zd

)
, for all z > 0,

where L1, L2 are positive constants only relying on b0, b1 and M and d = b0b1/(b0b1 + b0 + b1).

Proof of Lemma A.6. Evaluating equation (1.7) in Merlevède et al. (2011) at λ = Tz/4 and
r = T

d
1+d , we will finish the proof.

Lemma A.7. Suppose Assumption A1 holds, then there exist positive constants C3, C4, C5 not
relying on i, T,N, z such that, for all z > 0 and T

d
1+d ≥ 4(p+ 2),

P

(
sup

(β,α)∈K×A

∣∣∣∣Ĥi(β, α)−Hi(β, α)

∣∣∣∣ > 6z

)

≤ C4

[
1 +

(
1

z2(p+2)

)][(
1 +

T
1

1+d z2

C5

)−T
d

1+d /4

+
2

d
exp

(
− C3T

d
1+d zd

)
+

exp(−C3dT
d

1+d zd)

1− exp(−C3dT
d

1+d zd)

]
.
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Furthermore if logN = o(T
d

1+d ), then

sup
1≤i≤N

sup
(β,α)∈K×A

∣∣∣∣Ĥi(β, α)−Hi(β, α)

∣∣∣∣ = oP (1),

and
sup

θN∈ΘN

∣∣∣∣Ψ̂N (θN )−ΨN (θN )

∣∣∣∣ = oP (1).

Proof of Lemma A.7. Define τ = (β, α) ∈ K× A. For τ1 = (β1, α1), τ2 = (β2, α2) ∈ K× A, define
lit = ψ(Xit, Yit, β1, α1)− ψ(Xit, Yit, β2, α2). By Assumption A1.(e) and Lemma A.5, we have

|lit − E(lit)| ≤
(
Q(Xit, Yit) +B2

)
∥τ1 − τ2∥2. (A.21)

Assumption A1.(e) implies

P

(
Q(Xi1, Yi1) +B2 > t

)
≤ exp

(
1− (t/C)b1

)
, for all t > 0, (A.22)

with C = B1 +B2. Thanks to Assumption A1.(e), we can see

sup
i≥1

E

(
|Q(Xi1, Yi1) +B2|3

)
=

∫ ∞

0
P (|Q(Xi1, Yi1) +B2|3 > t)dt

≤
∫ ∞

0
exp

(
1− tb1/3/Cb1

)
dt <∞

In the view of Fan and Yao (2003)[Proposition 2.5] and (A.21), one concludes

|Cov(lit, lis)| ≤ 8α
1/3
[i] (t− s)E2/3

(
|li1 − E(li1)|3

)
≤ α

1/3
[i] (t− s)E2/3

(
|Q(Xi1, Yi1) +B2|3

)
∥τ1 − τ2∥22

≤ exp(−C0

3
|t− s|b0)E2/3

(
|Q(Xi1, Yi1) +B2|3

)
∥τ1 − τ2∥22, for all t ≥ s.

Combing above, one finds that

sup
i≥1

[
Cov(li1, li1) + 2

∑
t>1

Cov(li1, lit)
]

≤ M∥τ1 − τ2∥22, (A.23)

where

M = 2

(
[

∫ ∞

0
exp

(
1− tb1/3/Cb1

)
dt]2/3

) ∞∑
t=0

exp(−C0

3
tb0) <∞.

Combining (A.22) and (A.23) and apply Lemma A.6 with Zt = (lit−E(lit))∥τ1−τ2∥−1
2 , one shows

that

P

(
∥τ1 − τ2∥−1

2

∣∣∣∣ 1T
T∑
t=1

(lit − E(lit))

∣∣∣∣ > z

)

≤ 4

(
1 +

T
1

1+d z2

16M

)−T
d

1+d /2

+
16C21

z
exp

(
− C31T

d
1+d zd

)
, (A.24)
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where C21, C31 are positive constants which are free of i, z and T . In the following, we will apply
chaining argument to prove the concentration inequality.

For τ = (β, α), define process Xi(τ) =
∑T

t=1 [ψ(Xit, Yit, β, α)− E(ψ(Xit, Yit, β, α))] /T . For
simplicity and without causing confusion, we write X(τ) = Xi(τ) in rest of the proof. We construct
a sequence of nested sets T0 ⊂ T1 ⊂ · · · ⊂ K× A such that

∥τ − τ̃∥2 > 4−j ,

for every distinct points τ, τ̃ ∈ Tj , and that each Tj is ”maximal” in the sense that no additional
points can be added to Tj without violating above inequality. Therefore, by construction, the
cardinality |Tj | ≤ D4j(p+1), where D = max(diam(K × A), 21/d). Now we link every element
τj+1 ∈ Tj+1 to one and only one τj ∈ Tj such that

∥τj+1 − τj∥2 ≤ 4−j , (A.25)

which can be done by the construction of Tj+1 and Tj . Continue this process to link all points
in Tj with points in Tj−1, and so on, to obtain for every τj+1 ∈ Tj+1 a chain tτj+1, τj , . . . , τ0

that connects to a point in T0. For each integer k ≥ 0 and points τk+1, τ̃k+1 inTk+1, they link to
elements τ0, τ̃ ∈ T0. Therefore, by triangular inequality, we have∣∣∣∣[X(τk+1)−X(τ0)]− [X(τ̃k+1)−X(τ̃0)]

∣∣∣∣ =

∣∣∣∣ k∑
j=0

[X(τj+1)−X(τj)]−
k∑
j=0

[X(τ̃j+1)−X(τ̃j)]

∣∣∣∣
≤ 2

k∑
j=0

max

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣,
where for each fixed j, the maximum is take over all links (τ, τ̃) from Tj+1 to Tj . Therefore,
for fixed j, the maximum is take over at most |Tj+1| ≤ D4(j+1)(p+1) elements, with each links
satisfying ∥τ, τ̃∥2 ≤ 4−j . Combing above inequality with (A.24) and (A.25), we have for every
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z > 0

P

(
sup

τk+1,τ̃k+1∈Tk+1

∣∣∣∣[X(τk+1)−X(τ0)]− [X(τ̃k+1)−X(τ̃0)]

∣∣∣∣ > 4z

)

≤ P

( k∑
j=0

max

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣ > 2z

)

≤ P

( k∑
j=0

max

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣ > k∑
j=0

2−jz

)

≤
k∑
j=0

P

(
max

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣∥τ − τ̃∥2

∥τ − τ̃∥2
> 2−jz

)

≤
k∑
j=0

P

(
max

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣4−j
∥τ − τ̃∥2

> 2−jz

)

≤
k∑
j=0

P

(
max

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣
∥τ − τ̃∥2

> 2jz

)

≤
k∑
j=0

P

(
max

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣
∥τ − τ̃∥2

> 2jz

)
D4(j+1)(p+1)

≤
∞∑
j=0

4p+1D

[
4

(
1 +

T
1

1+d 4jz2

16M

)−T
1

1+d /2

+
16C21

2jz
exp

(
− C312

jdT
d

1+d zd
)]

4j(p+1).

≡ K1 +K2.

(A.26)
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Now we are ready to establish a bound for two terms in (A.26). Direct examination shows

K1 = 4p+2D

∞∑
j=0

(
1 +

T
1

1+d 4jz2

16M

)−T
d

1+d /2

4j(p+1)

= 4p+2D

(
16M

T
1

1+d z2

)p+1 ∞∑
j=0

(
1 +

T
1

1+d 4jz2

16M

)−T
d

1+d /2(T 1
1+d 4jz2

16M

)p+1

(Let az =
T

1
1+d z2

16M
)

= 4p+2D

(
1

az

)p+1 ∞∑
j=0

(
1 + 4jaz

)−T
d

1+d /2(
4jaz

)p+1

≤ 4p+2D

(
1

az

)p+1 ∞∑
j=0

(
1 + 4jaz

)−T
d

1+d

2
+p+1

(Notice T
d

1+d ≥ 4(p+ 2))

≤ 4p+2D

(
1

az

)p+1 ∞∑
j=0

(
1 + 4jaz

)−T
d

1+d

4
−1

= 4p+2D

(
1

az

)p+1[(
1 + 4az

)−T
d

1+d

4
−1

+

(
1 + 4az

)−T
d

1+d

4
−1

+
∞∑
j=2

(
1 + 4jaz

)−T
d

1+d

4
−1]

(Notice 4j ≥ j for j ≥ 2)

≤ 2× 4p+2D

(
1

az

)p+1(
1 + az

)−T
d

1+d

4
−1

+ 4p+2D

(
1

az

)p+1 ∞∑
j=2

(
1 + jaz

)−T
d

1+d

4
−1

≤ 2× 4p+2D

(
1

az

)p+1(
1 + az

)−T
d

1+d

4

+ 4p+2D

(
1

az

)p+1 ∫ ∞

1

(
1 + xaz

)−T
d

1+d

4
−1

dx

= 2× 4p+2D

(
1

az

)p+1(
1 + az

)−T
d

1+d

4

+ 4p+2D

(
1

az

)p+1 4

azT
d

1+d

(
1 + az

)−−T
d

1+d

4

≤ 4p+4D

[(
1

az

)p+1

+

(
1

az

)p+2](
1 + az

)−−T
d

1+d

4

. (A.27)
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A bound for K2 can be derived as follows:

K2 =

∞∑
j=0

4p+3C21D

z
exp

(
− C312

jdT
d

1+d zd
)
4j(p+1)2−j

≤
∞∑
j=0

4p+3C21D

z
exp

(
− C312

jdT
d

1+d zd
)
22j(p+1)

=
∞∑
j=0

4p+3C21D

T
2(p+1)
1+d z2(p+1)+1

(
4(p+ 1)

dC31

)2(p+1)/d

exp

(
− C312

jdT
d

1+d zd
)(

dC312
jdT

d
1+d zd

4(p+ 1)

)2(p+1)/d

(Let bz = C31T
d

1+d zd)

=
4p+3C21D

T
2(p+1)
1+d z2(p+1)+1

(
4(p+ 1)

dC31

)2(p+1)/d ∞∑
j=0

exp

(
− 2jdbz

)(
d2jdbz
4(p+ 1)

)2(p+1)/d

(Notice xy ≤ exp(xy) for all x > 0, y > 0)

≤ 4p+3C21D

T
2(p+1)
1+d z2(p+1)+1

(
4(p+ 1)

dC31

)2(p+1)/d ∞∑
j=0

exp

(
− 2jdbz/2

)

≤ 4p+3C21D

T
2(p+1)
1+d z2(p+1)+1

(
4(p+ 1)

dC31

)2(p+1)/d[ ∑
j:0≤j≤1/d

exp

(
− 2jdbz/2

)
+

∑
j:j≥1/d

exp

(
− 2jdbz/2

)]
(Notice 2jd ≥ jd for all j ≥ 1/d)

≤ 4p+3C21D

T
2(p+1)
1+d z2(p+1)+1

(
4(p+ 1)

dC31

)2(p+1)/d[(1

d
+ 1

)
exp

(
− bz/2

)
+

∑
j:j≥1/d

exp

(
− jdbz/2

)]

≤ 4p+3C21D

T
2(p+1)
1+d z2(p+1)+1

(
4(p+ 1)

dC31

)2(p+1)/d[2
d
exp

(
− bz/2

)
+

∞∑
j=1

exp

(
− jdbz/2

)]

=
4p+3C21D

T
2(p+1)
1+d z2(p+1)+1

(
4(p+ 1)

dC31

)2(p+1)/d[2
d
exp

(
− bz/2

)
+

exp(−dbz/2)
1− exp(−dbz/2)

]
. (A.28)

Therefore, in the view of (A.26), (A.27) and (A.28), we conclude that, when T
d

1+d ≥ 4(p+ 2), it
follows that for all z > 0

P

(
sup

τk+1,τ̃k+1∈Tk+1

∣∣∣∣[X(τk+1)−X(τ0)]− [X(τ̃k+1)−X(τ̃0)]

∣∣∣∣ > 4z

)
≤ C41

[(
1

T
1

1+d z2

)p+1

+

(
1

T
d

1+d z2

)p+2

+
1

T
2(p+1)
1+d z2(p+1)+1

]

×
[(

1 +
T

1
1+d z2

16M

)−T
d

1+d /4

+
2

d
exp

(
− C31T

d
1+d zd/2

)
+

exp(−C31dT
d

1+d zd/2)

1− exp(−C31dT
d

1+d zd/2)

]
,

(A.29)

where C41 = 4p+4D(16M)p+1 + 4p+4D(16M)p+2 + 4p+3C21D[4(p + 1)d−1C−1
31 ]2(p+1)/d < ∞. By
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triangle inequality, it follows that

sup
τk+1,τ̃k+1∈Tk+1

∣∣∣∣X(τk+1)−X(τ̃k+1)

∣∣∣∣ ≤ sup
τk+1,τ̃k+1∈Tk+1

∣∣∣∣[X(τk+1)−X(τ0)]− [X(τ̃k+1)−X(τ̃0)]

∣∣∣∣
+ sup
τk+1,τ̃k+1∈Tk+1

∣∣∣∣X(τ0)−X(τ̃0)

∣∣∣∣, (A.30)

where τ0, τ̃0 are linked with τk+1, τ̃k+1. The first term of the right side in (A.30) can be bounded in
probability by (A.29). For the second term of the right side in (A.30), we notice, the maximum is
taken over at most |T0|2 ≤ D2 terms. Applying (A.24) to X(τ0)−X(τ̃0) and noticing ∥τ0−τ̃0∥ ≤ D,
it follows that for all z > 0

P

(
sup

τk+1,τ̃k+1∈Tk+1

∣∣∣∣X(τ0)−X(τ̃0)

∣∣∣∣ > z

)

≤ D2P

(∣∣∣∣X(τ0)−X(τ̃0)

∣∣∣∣∥τ0 − τ̃0∥2

∥τ0 − τ̃0∥2
> z

)

≤ D2P

(∣∣∣∣X(τ0)−X(τ̃0)

∣∣∣∣D
∥τ0 − τ̃0∥2

> z

)

≤ 4D2

(
1 +

T
1

1+d z2

16MD2

)−T
d

1+d /2

+
16C21D

3

z
exp

(
− C31T

d
1+d zd

Dd

)

≤ 4D2

(
1 +

T
1

1+d z2

16MD2

)−T
d

1+d /4

+
16C21D

3

z
exp

(
− C31T

d
1+d zd

Dd

)
. (A.31)

Combining (A.29), (A.30), (A.31) and the fact Dd ≥ 2, we can conclude that

P

(
sup

τ,τ̃∈Tk+1

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣ > 5z

)
≤ P

(
sup

τ,τ̃∈Tk+1

∣∣∣∣[X(τk+1)−X(τ0)]− [X(τ̃k+1)−X(τ̃0)]

∣∣∣∣ > 4z

)
+P

(
sup

τk+1,τ̃k+1∈Tk+1

∣∣∣∣X(τ0)−X(τ̃0)

∣∣∣∣ > z

)
≤ C42

[
1 +

(
1

T
1

1+d z2

)p+1

+

(
1

T
d

1+d z2

)p+2

+
1

T
2(p+1)
1+d z2(p+1)+1

+
1

z

]

×
[(

1 +
T

1
1+d z2

16MD2

)−T
d

1+d /4

+
2

d
exp

(
− C31T

d
1+d zd/Dd

)
+

exp(−C31dT
d

1+d zd/Dd)

1− exp(−C31dT
d

1+d zd/Dd)

]
,

(A.32)

where C42 = C41 + 4D2 + 16C21D
3 < ∞. By continuity of process X(τ), we can show that with

probability one

sup
τ,τ̃∈∪∞

k=1Tk

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣ = sup
τ,τ̃∈K×A

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣.
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Furthermore notice the right side of (A.32) is independent of k. Therefore, by monotone conver-
gence theorem, it follows that

P

(
sup

τ,τ̃∈K×A

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣ > 5z

)
= P

(
sup

τ,τ̃∈∪∞
k=1Tk

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣ > 5z

)
= lim

k→∞
P

(
sup

τ,τ̃∈Tk+1

∣∣∣∣X(τ)−X(τ̃)

∣∣∣∣ > 5z

)
. (A.33)

Using similar argument in proving (A.24) and Assumption A1.(e), we have for any τ0 = (β0, α0) ∈
K× A, it follows that

P

(∣∣∣∣X(τ0)

∣∣∣∣ > z

)
≤ 4

(
1 +

T
1

1+d z2

16M

)−T
d

1+d /2

+
16C21

z
exp

(
− C31T

d
1+d zd

)

≤ 4

(
1 +

T
1

1+d z2

16M

)−T
d

1+d /4

+
16C21

z
exp

(
− C31T

d
1+d zd/Dd

)
. (A.34)

As a result, in view of (A.32), (A.33) and (A.34), we conclude that for all z > 0

P

(
sup

τ∈K×A

∣∣∣∣X(τ)

∣∣∣∣ > 6z

)
≤ P

(
sup

τ∈K×A
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)
+ P

(∣∣∣∣X(τ0)

∣∣∣∣ > z

)
≤ P

(
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)
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)
≤ C43

[
1 +

(
1

T
1

1+d z2
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+
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+
1
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+
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+
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]

×
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+
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(A.35)
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where C43 = C42+4+16C21 <∞, C3 = C31/D
d, C4 = 5C43 and C5 = 16MD2. As a consequence,

under conditions log(N) = o(T
d

1+d ), it follows that

P

(
sup

θN∈ΘN

∣∣∣∣Ψ̂N (θN )−ΨN (θN )

∣∣∣∣ > 6z

)

≤
(

sup
θN∈ΘN

∣∣∣∣ 1N
N∑
i=1

[
Ĥi(βgi , αi)−Hi(βgi , αi)

]∣∣∣∣ > 6z

)
≤ P

(
sup

1≤i≤N
sup

(β,α)∈K×A

∣∣∣∣Ĥi(β, α)−Hi(β, α)

∣∣∣∣ > 6z

)
≤ N max

1≤i≤N
P

(
sup

(β,α)∈K×A

∣∣∣∣Ĥi(β, α)−Hi(β, α)

∣∣∣∣ > 6z

)
= N max

1≤i≤N
P

(
sup

τ∈K×A

∣∣∣∣Xi(τ)

∣∣∣∣ > 6z

)
→ 0.

Lemma A.8. Suppose Assumptions A1 and A2 hold, then

sup
1≤i≤N

|α̂i(β0g0i )− α0
i | = oP (1).

Furthermore, let {βTi}, i ∈ [N ] be a random sequence such that sup1≤i≤N ∥βTi − β0
g0i
∥2 = oP (1),

then
sup

1≤i≤N
|α̂i(βTi)− α0

i | = oP (1).

Proof of Lemma A.8. For first convergence, by definition of SNT and Assumption A1.(c)

0 ≥ Ĥi(β
0
g0i
, α0

i )− Ĥi(β
0
g0i
, α̂i(β

0
g0i
))

≥ Hi(β
0
g0i
, α0

i )−Hi(β
0
g0i
, α̂i(β

0
g0i
))− 2SNT

≥ χ(|α̂i(β0g0i )− α0
i |2)− 2SNT .

So by above inequality and the fact χ(ϵ) is non decreasing, it follows from Lemma A.7 that

χ( sup
1≤i≤N

|α̂i(β0g0i )− α0
i |2) = sup

1≤i≤N
χ(|α̂i(β0g0i )− α0

i |2)

≤ 2SNT = oP (1).

Noticing χ(0) = 0 and χ(ϵ) > 0 for all ϵ > 0, above inequality implies

sup
1≤i≤N

|α̂i(β0g0i )− α0
i |2 = oP (1), (A.36)

which is the first convergence.
By Lemma A.5 and Lemma A.7, it follows that

sup
1≤i≤N

sup
α∈A

|Ĥi(βTi, α)− Ĥi(β
0
g0i
, α)| ≤ sup

1≤i≤N
sup
α∈A

|Hi(βTi, α)−Hi(β
0
g0i
, α)|+ 2SNT

≤ B2 sup
1≤i≤N

∥βTi − β0g0i
∥2 + 2SNT . (A.37)
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By (A.37), one finds that

B2 sup
1≤i≤N

∥βTi − β0g0i
∥2 + 2SNT

≥ sup
α∈A

|Ĥi(βTi, α)− Ĥi(β
0
g0i
, α)|

≥ |Ĥi(βTi, α̂i(βTi))− Ĥi(β
0
g0i
, α̂i(βTi))|

≥ |Ĥi(β
0
g0i
, α̂i(βTi))− Ĥi(β

0
g0i
, α̂i(β

0
g0i
))| − |Ĥi(βTi, α̂i(βTi))− Ĥi(β

0
g0i
, α̂i(β

0
g0i
))|

(By definition of SNT and definition of α̂i(β))

≥ |Hi(β
0
g0i
, α̂i(βTi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| − 2SNT − | sup

α∈A
Ĥi(βTi, α)− sup

α∈A
Ĥi(β

0
g0i
, α)|

≥ |Hi(β
0
g0i
, α̂i(βTi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| − 2SNT − sup

α∈A
|Ĥi(βT , α)− Ĥi(β

0
g0i
, α)|

(By (A.37))

≥ |Hi(β
0
g0i
, α̂i(βTi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| − 4SNT −B2 sup

1≤i≤N
∥βTi − β0g0i

∥2. (A.38)

Taking supremum on both sides of (A.38), we find that

sup
1≤i≤N

|Hi(β
0
g0i
, α̂i(βTi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| ≤ 2B2 sup

1≤i≤N
∥βTi − β0g0i

∥2 + 6SNT . (A.39)

In the view of (A.36), (A.39), Lemma A.5 and Lemma A.7, we have

sup
1≤i≤N

|Hi(β
0
g0i
, α0

i )−Hi(β
0
g0i
, α̂i(βTi))|

≤ sup
1≤i≤N

|Hi(β
0
g0i
, α̂i(βTi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))|+ sup

1≤i≤N
|Hi(β

0
g0i
, α0

i )−Hi(β
0
g0i
, α̂i(β

0
g0i
))|

≤ 2B2 sup
1≤i≤N

∥βTi − β0g0i
∥2 + 6SNT .+B2 sup

1≤i≤N
|α̂i(β0g0i )− α0

i |

= oP (1).

By above inequality and using similar argument in proving (A.36), it follows that

sup
1≤i≤N

|α̂i(βTi)− α0
i | = oP (1),

which is the second result.

Lemma A.9. For each i ≥ 1, let {ζit, t ∈ [T ]} be a stationary process with mean 0 and α-
mixing coefficient α(t) ≤ exp(−C0t

b0) for all t ≥ 1. Further more if supiE(|ζit|q0) ≤ K, for some
positive constant K, then

E(|
T∑
t=1

ζit|q0) ≤ CT q0/2, for all i ≥ 1,

and

P ( sup
1≤i≤N

|
T∑
t=1

ζit/T | > ϵ) ≤ Cϵ−q0NT−q0/2,
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where C > 0 is a constant only relying on c,K. As a consequence, if N = o(T q0/2), then

sup
1≤i≤N

|
T∑
t=1

ζit/T | = oP (1)

Proof of Lemma A.9. By Fan and Yao (2003, Theorem 2.17 and Proposition 2.7), we have

E(|
T∑
t=1

ζit|q0) ≤ CT q0/2, for all i ≥ 1, (A.40)

where C > 0 is a constant only relying on c,K, q0. By Chebyshev’s inequality and (A.40), for any
ϵ > 0, it follows that

P ( sup
1≤i≤N

|
T∑
t=1

ζit/T | > ϵ) ≤ N
E(|

∑T
t=1 ζit|q0)
ϵq0T

q
0

≤ CN

ϵq0T
q0/2

.

Recall following terms defined in Section 3.4:

ρi = E(
∂2ψ

∂α∂α
(Xi1, Yi1, β

0
g0i
, α0

i ))
−1

E(
∂2ψ

∂β∂α
(Xi1, Yi1, β

0
g0i
, α0

i )),

Ui(x, y, β, α) =
∂ψ

∂β
(x, y, β, α)− ρi

∂ψ

∂α
(x, y, β, α),

Λi = E(UitU
′
it) + 2

∞∑
t=1

E(Ui1U
′
i,1+t), with Uit = Ui(Xit, Yit, β

0
g0i
, α0

i ).

Lemma A.10. Under Assumption A1 and Assumption A3, we have

lim
T→∞

sup
i≥1

∥∥∥∥E
(∑T

t=1 Ui(Xit, Yit, β
0
g0i
, α0

i )
∑T

t=1 U
′
i(Xit, Yit, β

0
g0i
, α0

i )

)
T

− Λi

∥∥∥∥
2

= 0.

Proof of Lemma A.10. For u ∈ Rp with ∥u∥2 = 1, define ζit = u′Ui(Xit, Yit, β
0
g , α

0
i ) and autoco-

variance function ri(τ) = Cov(ζit, ζi,t+τ ), for τ ≥ 0. Assumption A3.(b) implies that

inf
i≥1

∣∣∣∣E(
∂2ψ

∂α∂α
(Xi1, Yi1, β

0
g0i
, α0

i ))

∣∣∣∣ > 0.

Above inequality and Lemma A.3 yields

λ ≡ sup
i≥1

∥ρi∥2 ≤
√
pE(J̃(Xi1, Yi1))

infi≥1

∣∣∣∣E( ∂2ψ
∂α∂α(Xi1, Yi1, β0g0i

, α0
i ))

∣∣∣∣
≤

√
pE1/q0(J̃q0(Xi1, Yi1))

infi≥1

∣∣∣∣E( ∂2ψ
∂α∂α(Xi1, Yi1, β0g0i

, α0
i ))

∣∣∣∣ <∞,
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and

|ζit| =
∣∣∣∣u′Ui(x, y, β, α)∣∣∣∣ ≤ ∥Ui(x, y, β, α)∥2 ≤

√
pJ̃(x, y) + λJ̃(x, y).

By Fan and Yao (2003)[Proposition 2.5] and Assumption A1.(b), we have

|ri(τ)| = |Cov(ζit, ζi,t+τ )|

≤ 8α
1/3
[i] (τ)E1/3(|ζit|3)E1/3(|ζi,t+τ |3)

= 8α
1/3
[i] (τ)E2/3(|ζit|3)

≤ 8α
1/3
[i] (τ) sup

i≥1
E2/3(J̃3(Xi1, Yi1)) ≡ Cα

1/3
[i] (τ),

with C = 8 supi≥1E
2/3(J̃3(Xi1, Yi1)) being finite due to Lemma A.3. Therefore, above inequality

and Assumption A1.(b) imply

sup
i≥1

∞∑
τ=1

|ri(τ)| ≤ C

∞∑
τ=1

sup
i≥1

α
1/3
[i] (τ) ≤ C

∞∑
τ=1

exp(−C0τ
b0) <∞. (A.41)

Direct examination yields

1

T
Var(

T∑
t=1

ζit) = ri(0) + 2
T−1∑
τ=1

(1− τ

T
)ri(τ). (A.42)

Thus it follows from (A.41), (A.42), Assumption A1.(b) and dominated convergence theorem that

lim
T→∞

sup
i≥1

∣∣∣∣ 1T Var(
T∑
t=1

ζit)−
(
ri(0) + 2

∞∑
τ=1

ri(τ)

)∣∣∣∣
≤ lim

T→∞
sup
i≥1

(
2

∞∑
τ=T

|ri(τ)|+ 2
T−1∑
τ=1

τ

T
|ri(τ)|

)

≤ 2 lim
T→∞

∞∑
τ=T

exp(−C0τ
b0) + 2 lim

T→∞

∞∑
τ=1

τ

T
exp(−C0τ

b0)I(τ ≤ T − 1) = 0, (A.43)

where second limit in above inequality is 0, since each summand is bounded by exp(−C0τ
b0),

which is summable. So that we can change the order of summation and limit. Direct calculation
yields

ri(0) + 2
∞∑
τ=1

ri(τ) = u′Λiu. (A.44)

Finally combining (A.43), (A.44) and noticing u is arbitrary, we proof the desired result.

Lemma A.11. Suppose Assumption A1 and A3 hold. Furthermore, if N = o(T q0/2), then for
any random sequence {βTi, i ∈ [N ]} such that sup1≤i≤N ∥βTi − β0

g0i
∥2 = oP (1) and for all |k| ≤ 3,

it follows that

sup
1≤i≤N

|
T∑
t=1

Dk(Xit, Yit, βTi, α̂i(βTi))/T − E(Dk(Xit, Yit, β
0
g0i
, α0

i ))| = oP (1).
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Proof of Lemma A.11. Fix |k| ≤ 3, let K(x, y, β, α) = Dkψ(x, y, β, α). By triangle inequality, we
have

sup
1≤i≤N

|
T∑
t=1

K(Xit, Yit, βTi, α̂i(βTi))/T − E(K(Xit, Yit, β
0
g0i
, α0

i ))| ≤ T1 + T2, (A.45)

with T1 = sup
1≤i≤N

∣∣∣∣ T∑
t=1

[K(Xit, Yit, βTi, α̂i(βTi))−K(Xit, Yit, β
0
g0i
, α0

i )]/T

∣∣∣∣,
T2 = sup

1≤i≤N

∣∣∣∣ T∑
t=1

K(Xit, Yit, β
0
g0i
, α0

i )/T − E(K(Xit, Yit, β
0
g0i
, α0

i ))

∣∣∣∣.
In the following we will bound T1 and T2 respectively. To bound T1, for any a > 0, we define

hai(x, y) = sup
{(β,α):∥β−β0

g0
i

∥2+|α−α0
i |≤a}

|K(x, y, β, α)−K(x, y, β0g0i
, α0

i )|.

By Lemma A.15, we have

RNT ≡ sup
1≤i≤N

∥βTi − β0g0i
∥2 + sup

1≤i≤N
|α̂i(βTi)− α0

i | = oP (1).

So for a > 0, it follows that

T1 ≤ I(RNT ≤ a) sup
1≤i≤N

T∑
t=1

hai(Xit, Yit)/T

+I(RNT > a) sup
1≤i≤N

|
T∑
t=1

[K(Xit, Yit, βTi, α̂i(βTi))−K(Xit, Yit, β
0
g0i
, α0

i )]/T |

≡ T11 + T12. (A.46)

By Lemma A.3, for a ≤ a0, we have sup1≤i≤N hai(x, y) ≤ J̃(x, y)a and supi≥1E(J̃q0(Xi1, Yi1)) <

∞. Hence Lemma A.9 yields

sup
1≤i≤N

|
T∑
t=1

hai(Xit, Yit)/T − E(hai(Xit, Yit))| = oP (1). (A.47)

By (A.47) and Lemma A.3, it holds that

T11 ≤ sup
1≤i≤N

T∑
t=1

hai(Xit, Yit)/T

= sup
1≤i≤N

E(hai(Xit, Yit)) + oP (1)

≤ sup
i≥1

E(J̃(Xit, Yit))a+ oP (1)

= a sup
i≥1

E1/(q0)(J̃q0(Xi1, Yi1)) + oP (1).
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Since a can be arbitrary small, it follows that T11 = oP (1). The fact that RNT = oP (1) implies
T12 = oP (1). Combining (A.46) and above, we have

T1 = oP (1). (A.48)

By Lemma A.9 and Lemma A.3, a bound for T2 can be obtained as follows,

T2 = oP (1). (A.49)

The result follows when combing (A.45), (A.48) and (A.49).

Lemma A.12. Let x0 be a point in Rm and h be a function defined on the ball B = {x ∈ Rm :

∥x−x0∥ < r) with derivativce ḣ and Hessian matrix ḧ which satisfies ∥ḧ(x)− ḧ(x0)∥ ≤ L∥x−x0∥
for x ∈ B. If h is maximized at x0, then

h(x0)− h(x) ≥ (1/2)∥x− x0∥2(λ− Lδ), ∥x− x0∥ < δ,

holds for all 0 < δ < r and with λ the smallest eigenvalue of the matrix −ḧ(x0).

Proof. The desired result follows from the Taylor expansion

h(x0 + t)− h(x0) = t′ḣ(x0) +

∫ 1

0
(1− s)t′ḧ(x0 + st)t ds

the fact that x0 is a stationary point and that the integral is bounded by [t′ḧ(x0)t+L∥t∥3]/2.

Lemma A.13. Suppose Assumption A1, A3 hold. Then there exist constant C6, C7 > 0 such
that for any (βi, αi) ∈ K×A, 1 ≤ i ≤ N satisfying sup1≤i≤N (∥βi − β0

g0i
∥22 + |αi − α0

i |2)1/2 < C7, it
follows that for all i ≥ 1

Hi(β
0
g0i
, α0

i )−Hi(βi, αi) ≥ C6(∥βi − β0g0i
∥22 + |αi − α0

i |2),

and
1

N

N∑
i=1

(
Hi(β

0
g0i
, α0

i )−Hi(βi, αi)

)
≥ C6

N

N∑
i=1

(∥βi − β0g0i
∥22 + |αi − α0

i |2).

Proof of Lemma A.13. This follows from Lemma A.12 applied with x0 equal to (β0
g0i
, αi) and h

equal to the restriction of Hi to Bi. By Lemma A.3, it follows that that Ḧi is Lipschitz in Bi with
Lipschitz constant Li = (p+1)(E(J̃2(Xi1, Yi1)))

1/2 and noting that M = infi≥1 λmin(−Ḧi(β
0
g0i
α0
i ))

is positive and Λ = supi≥1 Li is finite. Thus the choices C6 = M/4 and C7 = min(a0,M/(2Λ))

work.

Lemma A.14. Under Assumption A1, A3, there exist constant C8, C9 > 0 such that for ϵ > 0

small enough,

inf
i≥1

inf
∥β−β0

g0
i

∥22+|α−α0
i |2≥ϵ

[Hi(β
0
g0i
, α0

i )−Hi(β, α)] ≥ min(C8, C9ϵ).
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Proof of Lemma A.14. Assumption A1.(c) and Lemma A.13 imply

inf
1≤i≤N

inf
∥β−β0

g0
i

∥22+|α−α0
i |2≥ϵ

[Hi(β
0
g0i
, α0

i )−Hi(β, α)]

= min

{
inf

1≤i≤N
inf

∥β−β0
g0
i

∥22+|α−α0
i |2≥C2

7

[Hi(β
0
g0i
, α0

i )−Hi(β, α)],

inf
1≤i≤N

inf
C2

7>∥β−β0
g0
i

∥22+|α−α0
i |2≥ϵ

[Hi(β
0
g0i
, α0

i )−Hi(β, α)]

}

≥ min

{
χ(C2

7 ), C6ϵ

}
.

Therefore, we proof the result with C8 = χ(C2
7 ) and C9 = C6.

Lemma A.15. Suppose Assumptions A1-A3 hold. Let {βgi , i ∈ [N ]} be a random sequence
satisfying sup1≤i≤N ∥βgi − β0

g0i
∥2 ≤ η for some small enough η > 0 with probability approaching

one, then there exists a constant C10 > 0 such that with probability approaching one

sup
1≤i≤N

|α̂i(βgi)− α0
i | ≤ C10

√
η.

Proof of Lemma A.15. Since with probability approaching one, sup1≤i≤N ∥βgi − β0
g0i
∥2 ≤ η, we

may proceed our proof assuming sup1≤i≤N ∥βgi − β0
g0i
∥2 ≤ η.

By Lemma A.5 and definition of SNT , it follows that

sup
1≤i≤N

sup
α∈A

|Ĥi(βgi , α)− Ĥi(β
0
g0i
, α)| ≤ sup

1≤i≤N
sup
α∈A

|Hi(βgi , α)−Hi(β
0
g0i
, α)|+ 2SNT

(By Lemma A.5)

≤ B2 sup
1≤i≤N

∥βgi − β0g0i
∥2 + 2SNT

≤ B2η + 2SNT (A.50)

By direct examination and (A.50), one concludes that

B2η + 2SNT ≥ sup
α∈A

|Ĥi(βgi , α)− Ĥi(β
0
g0i
, α)|

≥ |Ĥi(βgi , α̂i(βgi))− Ĥi(β
0
g0i
, α̂i(βgi))|

≥ |Ĥi(β
0
g0i
, α̂i(βgi))− Ĥi(β

0
g0i
, α̂i(β

0
g0i
))| − |Ĥi(βgi , α̂i(βgi))− Ĥi(β

0
g0i
, α̂i(β

0
g0i
))|

(By definition of SNT and definition of α̂i(β))

≥ |Hi(β
0
g0i
, α̂i(βgi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| − 2SNT − | sup

α∈A
Ĥi(βgi , α)− sup

α∈A
Ĥi(β

0
g0i
, α)|

≥ |Hi(β
0
g0i
, α̂i(βgi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| − 2SNT − sup

α∈A
|Ĥi(βgi , α)− Ĥi(β

0
g0i
, α)|,

(By (A.50))

≥ |Hi(β
0
g0i
, α̂i(βgi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| − 4SNT −B2η. (A.51)
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taking supremum on both sides of (A.51), we have

sup
1≤i≤N

|Hi(β
0
g0i
, α̂i(βgi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))| ≤ 2B2η + 6SNT . (A.52)

In the view of (A.52), Lemma A.5, Lemma A.7 and Lemma A.8 , we have

sup
1≤i≤N

|Hi(β
0
g0i
, α0

i )−Hi(β
0
g0i
, α̂i(βgi))| ≤ sup

1≤i≤N
|Hi(β

0
g0i
, α̂i(βgi))−Hi(β

0
g0i
, α̂i(β

0
g0i
))|

+ sup
1≤i≤N

|Hi(β
0
g0i
, α0

i )−Hi(β
0
g0i
, α̂i(β

0
g0i
))|

≤ 2B2η + 6SNT +B2 sup
1≤i≤N

|α̂i(β0g0i )− α0
i |

= 2B2η + oP (1).

Combining above inequality and Lemma A.14, when C8 > 2B2η, it follows that

sup
1≤i≤N

|α̂i(βgi)− α0
i | ≤

√
2B2/C9η + oP (1).

Therefore, the first result holds with C10 =
√
2B2/C9. The proof of second result is almost the

same as that of first one.

Lemma A.16. Suppose Assumption A1-A3 hold. Furthermore, if G ≥ G0, then for η > 0

small enough , we have the following:

(i) For all β ∈ Nη, {Aη(β, g), g ∈ [G0]} is a partition of [G] and each Aη(β, g) is non empty
for all g ∈ [G0].

(ii) lim(N,T )→∞ P

(
supβ∈Nη

sup1≤i≤N I(ĝi(β) ̸∈ Aη(β, g
0
i )) > 0

)
= 0.

(iii) If G = G0, then each Aη(β, g) contains exactly one element for all g ∈ [G0] and thus Aη(β, ·)
is a permutation of [G0]. Under this permutation,

lim
(N,T )→∞

P

(
sup
β∈Nη

sup
1≤i≤N

I(ĝi(β) ̸= g0i ) > 0

)
= 0.

Proof of Lemma A.16. (i) For β ∈ Nη, by definition, each Aη(β, g) is not empty. Moreover, defi-
nition of Nη and Aη shows that ∪G0

g=1Aη(β, g) = [G]. Now we remain to show that {Aη(β, g), g ∈
[G0]} is a partition of [G]. Assume there exist some g12 ∈ [G], g1, g2 ∈ [G0] such that g12 ∈
Aη(β, g1) ∩ Aη(β, g2), then by Assumption A1.(d) and for η < d0/2 , it follows that

d0 ≤ ∥β0g1 − β0g2∥2 ≤ ∥βg12 − β0g1∥2 + ∥βg12 − β0g2∥2 < 2η < d0,

which is a contradiction.
(ii) By definition of ĝi(β), we have for all g ∈ [G] and g̃ ∈ [G]:

I(ĝi(β) = g) ≤ I(Ĥi(βg̃, α̂i(βg̃)) ≤ Ĥi(βg, α̂i(βg))),
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Therefore, for any g̃i ∈ Aη(β, g
0
i ), it implies that

I(ĝi(β) ̸∈ Aη(β, g
0
i )) =

G∑
g=1

I(g ̸∈ Aη(β, g
0
i ))I(ĝi(β) = g)

≤
G∑
g=1

I(g ̸∈ Aη(β, g
0
i ))I(Ĥi(βg̃i , α̂i(βg̃i)) ≤ Ĥi(βg, α̂i(βg))) ≡

G∑
g=1

Wig(β).

(A.53)

Since for all β ∈ Nη, {Aη(β, g), g ∈ [G0]} is a partition of [G]. Therefore, for all g ̸∈ Aη(β, g
0
i ),

we have g ∈ Aη(β, g
0
j ) with g0j ∈ [G0] and g0j ̸= g0i . By definition, for small enough η and by

Assumption A1.(d), we have

∥β0g0i − βg∥2 ≥ ∥β0g0i − β0g0j
∥2 − ∥βg − β0g0j

∥ ≥ d0 − η > 0.

According to Lemma A.7 and above inequality, it follows that for all β ∈ Nη and g ̸∈ Aη(β, g
0
i ),

Hi(β
0
g0i
, α0

i )−Hi(βg, α̂i(βg)) ≥ χ(|d0 − η|2) (A.54)

On the other hand, by Lemma A.5, for all g̃i ∈ Aη(β, g
0
i ), we have

Hi(β
0
g0i
, α0

i )−Hi(βg̃i , α̂i(βg̃i)) ≤ B2∥β0g0i − βg̃i∥2 +B2|α0
i − α̂i(βg̃i)|

≤ B2η +B2|α0
i − α̂i(βg̃i)|

≤ B2η +B2 sup
1≤i≤N

|α0
i − α̂i(βg̃i)|. (A.55)

Next define event ANT = {sup1≤i≤N |α0
i − α̂i(βg̃i)| ≤ C10

√
η}, then P (AcNT ) = o(1) by Lemma

A.15. To proceed further, choose sufficiently small η such that ϵη ≡ χ(|d0−η|2)−B2η−C10
√
η > 0

for all (N,T ) is large enough and this can done by Assumption A1.(c). Hence by (A.54) and (A.55),
for all β ∈ Nη and i ∈ [N ], on the event ANT , it holds that

Hi(βg̃i , α̂i(βg̃i))−Hi(βg, α̂i(βg)) ≥ ϵη. (A.56)

As a consequence of (A.56), it yields that

Wig(β) = I(g ̸∈ Aη(β, g
0
i ))I(Ĥi(βg̃i , α̂i(βg̃i)) ≤ Ĥi(βg, α̂i(βg)))

≤ I(g ̸∈ Aη(β, g
0
i ))I(ϵη ≤ Ĥi(βg, α̂i(βg))− Ĥi(βg̃i , α̂i(βg̃i))−Hi(βg, α̂i(βg)) +Hi(βg̃i , α̂i(βg̃i)))

×I(ANT ) + I(AcNT )

≤ 2I(ϵη/2 ≤ sup
β∈K,α∈A

|Ĥi(β, α)−Hi(β, α)|) + I(AcNT ). (A.57)
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By Lemma A.7, (A.53) and (A.57), it yields that

P ( sup
β∈Nη

sup
1≤i≤N

I(ĝi(β) ̸∈ Aη(β, g
0
i )) > 0)

= P ( sup
β∈Nη

sup
1≤i≤N

I(ĝi(β) ̸∈ Aη(β, g
0
i )) > 0.5)

≤
G∑
g=1

P{ sup
β∈Nη

sup
1≤i≤N

Wi,g(β) > 0.5)

≤
G∑
g=1

P ( sup
1≤i≤N

2I(ϵη/2 ≤ sup
β∈K,α∈A

|Ĥi(β, α)−Hi(β, α)|) > 0.25)

+P (I(AcNT ) > 0.25)

=

G∑
g=1

P ( sup
1≤i≤N

sup
β∈K,α∈A

|Ĥi(β, α)−Hi(β, α)| ≥ ϵη/2) + P (AcNT ) = o(1).

(iii) If G = G0, since {Aη(β, g), g ∈ [G0]} is a partition of [G] = [G0] and each Aη(β, g) is
non empty, so Aη(β, g) only contains exactly on elements in [G] = [G0]. We are able to define
the permutation Aη(β, ·) : [G0] → [G0]. Therefore, under this permutation, the second result is a
specially case of first one. Proof completed.

Lemma A.17. Suppose Assumption A1 and A3 hold. Furthermore, if N = o(T q0/2), then for
any random sequence {βTi, i ∈ [N ]} satisfying sup1≤i≤N ∥βTi−β0g0i ∥2 = oP (1), the following holds:

N∑
i=1

|α̂i(βTi)− α0
i |2/N = Op( sup

1≤i≤N
∥βTi − β0g0i

∥22 + T−1).

Proof of Lemma A.17. By triangular inequality, it can be seen that

sup
1≤i≤N

|α̂i(βTi)− α0
i | ≤ sup

1≤i≤N
|α̂i(βTi)− α̂i(β

0
g0i
)|+ sup

1≤i≤N
|α̂i(β0g0i )− α0

i |. (A.58)

In the following, we will bound two terms in (A.58) respectively. For first term, by the definition
of α̂i(β), we have

∑T
t=1

∂ψ
∂α (Xit, Yit, β, α̂i(β)) = 0. By implicit function differential theorem, we

have

∂α̂i
∂β

(β) = [
T∑
t=1

∂2ψ

∂α∂α
(Xit, Yit, β, α̂i(β))/T ]

−1
T∑
t=1

∂2ψ

∂β∂α
(Xit, Yit, β, α̂i(β))/T.

Therefore, by mean value theorem and Lemma A.3, we have for some si ∈ [0, 1], it holds that

α̂i(βTi)− α̂i(β
0
g0i
) =

∂α̂i
∂β

(β0g0i
+ si(βTi − β0g0i

))(βTi − β0g0i
), (A.59)

According to Lemma A.11 and Assumption A3.(b), it yields that

sup
1≤i≤N

|∂α̂i
∂β

(β0g0i
+ si(βTi − β0g0i

))− E−1[
∂2ψ

∂α∂α
(Xit, Yit, β

0
g0i
, α0

i )]E[
∂2ψ

∂β∂α
(Xit, Yit, β

0
g0i
, α0

i )]| = oP (1).

(A.60)
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Combining (A.59), (A.60) and Lemma A.3, we have

N∑
i=1

|α̂i(βTi)− α̂i(β
0
g0i
)|2/N ≤ sup

1≤i≤N
|α̂i(βTi)− α̂i(β

0
g0i
)|2 = Op( sup

1≤i≤N
∥βTi − β0g0i

∥22). (A.61)

For second term, by Taylor expansion, for some si ∈ [0, 1], we have

−
T∑
t=1

∂ψ

∂α
(Xit, Yit, β

0
g0i
, α0

i )/T

=

T∑
t=1

[
∂ψ

∂α
(Xit, Yit, β

0
g0i
, α̂i(β

0
g0i
))− ∂ψ

∂α
(Xit, Yit, β

0
g0i
, α0

i )]/T

=

T∑
t=1

∂2ψ

∂α∂α
(Xit, Yit, β

0
g0i
, α0

i + si(α̂i(β
0
g0i
)− α0

i ))/T (α̂i(β
0
g0i
)− α0

i ). (A.62)

Combing (A.62) and Lemma A.11, it follows that

−
T∑
t=1

∂ψ

∂α
(Xit, Yit, β

0
g0i
, α0

i )/T = (E[
∂2ψ

∂α∂α
(Xit, Yit, β

0
g0i
, α0

i )] + oP (1))(α̂i(β
0
g0i
)− α0

i ),

where the oP (1) is free of i. By Assumption A3.(b), it yields that

α̂i(β
0
g0i
)− α0

i = (E−1[
∂2ψ

∂α∂α
(Xit, Yit, β

0
g0i
, α0

i )]
T∑
t=1

∂ψ

∂α
(Xit, Yit, β

0
g0i
, α0

i )/T + oP (1)(α̂i(β
0
g0i
)− α0

i ),

= E−1(Rαi1)
T∑
t=1

Rit/T + oP (1)(α̂i(β
0
g0i
)− α0

i ), (A.63)

where the oP (1) is free of i. By Assumption A3.(b), Lemma A.9 and Lemma A.3 , it follows that

E(
1

N

N∑
i=1

|E−1(Rαi1)

T∑
t=1

Rit/T |2) =
1

N

N∑
i=1

E−2[
∂2ψ

∂α∂α
(Xit, Yit, β

0
g0i
, α0

i )]E([

∑T
t=1

∂ψ
∂α (Xit, Yit, β

0
g0i
, α0

i )

T
]2)

≤ inf
i≥1

E−2[
∂2ψ

∂α∂α
(Xit, Yit, β

0
g0i
, α0

i )]CT
−1, (A.64)

where C > 0 is an universal constant free of i,N, T . Combining (A.63) and (A.64), we have

N∑
i=1

|α̂i(β0g0i )− α0
i |2/N = Op(T

−1). (A.65)

Therefore, the desired result follows from (A.61) and (A.65). Proof completed.
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Lemma A.18. Suppose Assumption A1, A3 hold and N = O(T q0/2)., then for any g ∈ [G0],
we have following stochastic expansion:

1

NgT

∑
i:g0i =g

T∑
t=1

[Ui(Xit, Yit, β̃g, α̂i(β̃g))− Ui(Xit, Yit, β
0
g , α

0
i )]

=
1

NgT

∑
i:g0i =g

T∑
t=1

Vi(Xit, Yit, β
0
g , α

0
i )(β̃g − β0g )

+
1

NgT

∑
i:g0i =g

( ∑T
t=1Rit√
TE(Rαi1)

)(
1√
T

T∑
t=1

[Uαit −
E(Uααi1 )

2E(Rαit)
Rit]

)
+oP (∥β̃g − β0g∥2) + oP (T

−1).

Proof. For notational simplicity, we assume β̃g is a scalar. Extension to the case when β̃g is multi-
dimensional can be easily done by similar technique. By Theorem 2 and Theorem 5, we can see
∥β̃g − β0g∥2 = op(1). By mean value theorem, it follows that

1

NgT

∑
i:g0i =g

T∑
t=1

[Ui(Xit, Yit, β̃g, α̂i(β̃g))− Ui(Xit, Yit, β
0
g , α

0
i )− Vi(Xit, Yit, β

0
g , α

0
i )(β̃g − β0g )]

=
1

NgT

∑
i:g0i =g

T∑
t=1

∂Ui
∂α

(Xit, Yit, β
0
g , α

0
i )(α̂i(β̃g)− α0

i )

+
1

2NgT

∑
i:g0i =g

T∑
t=1

∂2Ui
∂β∂β

(Xit, Yit, β
0
g + si(β̃g − β0g ), α

0
i + si(α̂i(β̃g)− α0

i ))(β̃g − β0g )
2

+
1

2NgT

∑
i:g0i =g

T∑
t=1

∂2Ui
∂β∂α

(Xit, Yit, β
0
g + si(β̃g − β0g ), α

0
i + si(α̂i(β̃g)− α0

i ))(β̃g − β0g )(α̂i(β̃g)− α0
i )

+
1

2NgT

∑
i:g0i =g

T∑
t=1

∂2Ui
∂α∂α

(Xit, Yit, β
0
g + si(β̃g − β0g ), α

0
i + si(α̂i(β̃g)− α0

i ))(α̂i(β̃g)− α0
i )

2,

≡ T1 + T2/2 + T3/2 + T4/2,

(A.66)

where si are some numbers in [0, 1]. Next we will bound T1, T2, T3, T4 respectively. Firstly, by
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Lemma A.9 and Lemma A.17, it shows that

T1 =
1

NgT

∑
i:g0i =g

T∑
t=1

∂Ui
∂α

(Xit, Yit, β
0
g , α

0
i )(α̂i(β̃g)− α0

i )

=
1

NgT

∑
i:g0i =g

T∑
t=1

Uαit(α̂i(β̃g)− α0
i )

=
1

NgT

∑
i:g0i =g

T∑
t=1

Uαit(α̂i(β̃g)− α̂i(β
0
g )) +

1

NgT

∑
i:g0i =g

T∑
t=1

Uαit(α̂i(β
0
g )− α0

i )

≡ T11 + T12.

Concerning T11, by Cauchy’s inequality and notice

|T11|2 ≤ 1

N2
g

∑
i:g0i =g

|
T∑
t=1

Uαit/T |2
∑
i:g0i =g

|α̂i(β̃g)− α̂i(β
0
g )|2

= Op(T
−1)Op(∥β̃g − β0g∥22),

where the last equality comes from Lemma A.9 and (A.61) in Lemma A.17. For T12, by (A.63) in
Lemma A.17, it holds that

T12 =
1

Ng
E−1(Rαi1)

∑
i:g0i =g

( T∑
t=1

Uαit/T

)( T∑
t=1

Rit/T

)
+ oP (1)×

1

Ng

∑
i:g0i =g

( T∑
t=1

Uαit/T

)
(α̂i(β

0
g )− α0

i ).

(A.67)

Since by Cauchy’s inequality, Lemma A.9 and (A.65) in Lemma A.17, we have

| 1

Ng

∑
i:g0i =g

( T∑
t=1

Uαit/T

)
(α̂i(β

0
g )− α0

i )|2 ≤ 1

N2
g

∑
i:g0i =g

|
T∑
t=1

Uαit/T |2
∑
i:g0i =g

|α̂i(β0g )− α0
i |2

= Op(T
−1)Op(T

−1).

As a consequence, the second term in right side of (A.67) is oP (T−1). Therefore, combining above,
it follows that

T1 =
1

Ng
E−1(Rαi1)

∑
i:g0i =g

( T∑
t=1

Uαit/T

)( T∑
t=1

Rit/T

)
+Op(∥β̃g − β0g∥2T−1/2) + op(T

−1). (A.68)

Secondly, by Lemma A.11, we have

sup
1≤i≤N

|
T∑
t=1

∂2Ui
∂β∂β

(Xit, Yit, β
0
g + si(β̃g − β0g ), α

0
i + si(α̂i(β̃g)− α0

i ))/T − E[
∂2Ui
∂β∂β

(Xit, Yit, β
0
g , α

0
i )]| = oP (1).
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Therefore, by Cauchy’s inequality and Lemma A.3, it follows that

|T2| = | 1

Ng

∑
i:g0i =g

ciT |(β̃g − β0g )
2

≤ | 1

Ng

∑
i:g0i =g

E[
∂2Ui
∂β∂β

(Xit, Yit, β
0
g , α

0
i )] + oP (1)|(β̃g − β0g )

2

= oP (∥β̃g − β0g∥2), (A.69)

where ciT =
∑T

t=1
∂2Ui
∂β∂β (Xit, Yit, β

0
g + si(β−β0g ), α

0
i + si(α̂i(β)−α0

i )). Similar proof can show that

T3 = oP (∥β̃g − β0g∥2). (A.70)

Lastly, we will deal with T4. Let

diT =
T∑
t=1

∂2Ui
∂α∂α

(Xit, Yit, β
0
g + si(β̃g − β0g ), α

0
i + si(α̂i(β̃g)− α0

i ))/T.

By Lemma A.11 , we have

sup
1≤i≤N

|diT − E(Uααi1 )| = oP (1).

As a consequence, by Lemma A.17 we have

T4 =
1

Ng

∑
i:g0i =g

diT (α̂i(β̃g)− α0
i ))

2

=
1

Ng

∑
i:g0i =g

(E(Uααi1 ) + oP (1))(α̂i(β̃g)− α0
i ))

2

=
1

Ng

∑
i:g0i =g

E(Uααi1 )(α̂i(β̃g)− α0
i ))

2 + oP (∥β̃g − β0g∥22 + T−1). (A.71)

Now we will establish a bound of (A.71). By Assumption A3.(b) and Lemma A.3, it follows that
supi≥1 |E(Uααi1 )| <∞. Furthermore, in the view of (A.61) in Lemma A.17, we have

| 1

Ng

∑
i:g0i =g

E(Uααi1 )(α̂i(β̃g)− α0
i ))

2 − 1

Ng

∑
i:g0i =g

E(Uααi1 )(α̂i(β
0
g )− α0

i ))
2|

≤ sup
i:g0i =g

E(Uααi1 )

(
|α̂i(β̃g)− α̂i(β

0
g )|2 + 2|α̂i(β̃g)− α̂i(β

0
g )||α̂i(β0g )− α0

i )|
)

= op(∥β̃g − β0g∥2). (A.72)

Meanwhile, by (A.63) in Lemma A.17, we can show

1

Ng

∑
i:g0i =g

E(Uααi1 )(α̂i(β
0
g )− α0

i ))
2 =

1

Ng

∑
i:g0i =g

E(Uααi1 )

E2(Rαi1)
(

T∑
t=1

Rit/T )
2 + oP (T

−1). (A.73)
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Combining (A.71), (A.73) and (A.73), we have

T4 =
1

Ng

∑
i:g0i =g

E(Uααi1 )

E2(Rαi1)
(
T∑
t=1

Rit/T )
2 + op(∥β̃g − β0g∥2) + oP (T

−1). (A.74)

The desired result follows from (A.66), (A.68), (A.69), (A.70) and (A.74). Proof completed.

Lemma A.19. Under Assumption A1, A3 and G < G0, there exists a constant B4 such that
lim inf(N,T )→∞[ΨN (θ

0
N )−ΨN (θ̂N )] ≥ B4 > 0.

Proof of Lemma A.19. First we will show that for fixed G < G0, the following holds:

max
g∈[G0]

min
g̃∈[G]

∥β̂g̃ − β0g∥2 ≥ d0/2. (A.75)

Assume (A.75) fails to hold, then for each g ∈ [G0], there is a g̃ = σ(g) ∈ [G] such that ∥β̂g̃−β0g∥2 <
d0/2, where σ : [G0] → [G] is the map defined in (A.1). Since G < G0, so for some g̃0 ∈ [G], there
are g1, g2 ∈ [G0] such that σ(g1) = σ(g2) = g̃0. Hence it follows that

∥β̂g̃0 − β0gi∥2 < d0/2, for i = 1, 2. (A.76)

By triangular inequality and (A.76), we have ∥β0g1 − β0g2∥2 < d0, which leads a contradiction to
Assumption A1.(d). Hence we verify (A.75). By direct examination and (A.75), it follows that∑N

i=1 ∥β̂ĝi − β0
g0i
∥2

N
=

∑G0

g=1

∑N
i=1 I(g

0
i = g)∥β̂ĝi − β0g∥2
N

≥
∑G0

g=1

∑N
i=1 I(g

0
i = g)ming̃∈[G] ∥β̂g̃ − β0g∥2

N

≥
∑G0

g=1Ngming̃∈[G] ∥β̂g̃ − β0g∥2
N

≥
maxg∈[G0]Ngming̃∈[G] ∥β̂g̃ − β0g∥2

N

≥
ming∈[G0]Ngd0

N
. (A.77)

By (A.77) and Assumption A1.(f), for sufficient large N , it follows that∑N
i=1 ∥β̂ĝi − β0

g0i
∥2

N
≥ min

g∈[G0]
πgd0/2 > 0. (A.78)

For notational simplicity, let ϵ0 = ming∈[G0] πgd0/2 > 0. By (A.78) and Lemma A.4, we can see
that

lim inf
(N,T )→∞

[ΨN (θ
0
N )−ΨN (θ̂N )] ≥

ϵ0
2R

χ(ϵ20/8) > 0.

Therefore, the results follow with B4 = ϵ0χ(ϵ
2
0/8)/(2R).



/ 49

Lemma A.20. Let ν be a constant such that 0 < ν ≤ 1
2(1+d) . Suppose Assumptions A1-A3

hold and G ≥ G0. Furthermore, if logN = o(T ( 1
1+d

−ν)d), then

N∑
i=1

(∥β̂ĝi − β0g0i
∥22 + |α̂i − α0

i |2)/N = Op
(
T−ν) .

Proof of Lemma A.20. For notational simplicity, define d̃N (θN , θ0N ) =
∑N

i=1(∥βgi − β0
g0i
∥22 + |αi −

α0
i |2)/N and AN = {θN ∈ ΘN : sup1≤i≤N (∥βgi − β0

g0i
∥22 + |αi − α0

i |2) ≤ C2
7}. By Lemma A.15

and Theorem 2, we have d̃N (θ̂N , θ0N ) = oP (1) and lim(N,T )→∞ P (θ̂N ∈ AN ) = 1. Let rNT be an
increasing sequence of positive number and define SN,j = {θN ∈ ΘN : 2j−1 ≤ rNT d̃N (θN , θ

0
N ) ≤

2j}∩AN . If rNT d̃N (θ̂N , θ0N ) > 2k for a some sufficient large integer k, then θ̂N is in one of the set
SN,j for some j > k. So it follows that, for all η > 0

P (rNT d̃N (θ̂N , θ
0
N ) > 2k, θ̂N ∈ AN ) ≤

∑
j≥k,2j≤ηrNT

P

(
sup

θN∈SN,j

[
Ψ̂N (θN )− Ψ̂N (θ

0
N )

]
≥ 0

)
+P (d̃N (θ̂N , θ

0
N ) > η). (A.79)

The second term in right side of (A.79) is o(1) by argument above. Now we will handle the first
summation. Notice if θN ∈ SN,j , and choosing sufficiently small η , we have d̃N (θN , θ0N ) ≤ η. As
a consequence, by Lemma A.13, it holds for all θN ∈ SN,j that

ΨN (θ
0
N )−ΨN (θN ) ≥ C6

N

N∑
i=1

(∥βgi − β0g0i
∥22 + |αi − α0

i |2)

= C6d̃N (θN , θ
0
N )

≥ C62
j−1r−1

NT . (A.80)

In the view of (A.80), it follows that

P ( sup
θN∈SN,j

[Ψ̂N (θN )− Ψ̂N (θ
0
N )] ≥ 0)

≤ P ( sup
θN∈SN,j

[Ψ̂N (θN )−ΨN (θN )− Ψ̂N (θ
0
N ) + ΨN (θ

0
N )] ≥ C62

j−1r−1
NT )

≤ 2P ( sup
θN∈SN,j

|Ψ̂N (θN )−ΨN (θN )| ≥ C62
j−1r−1

NT )

≤ 2P ( sup
θN∈ΘN

|Ψ̂N (θN )−ΨN (θN )| ≥ C62
j−1r−1

NT )

≤ 2P

(
sup

1≤i≤N
sup

(β,α)∈K×A

∣∣∣∣Ĥi(β, α)−Hi(β, α)

∣∣∣∣ > C62
j−1r−1

NT

)
. (A.81)

Next we will establish a bound of (A.81). By Lemma A.7, (A.81) and replacing rNT by C6T
ν/6,
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then for large k that 4k−1/C5 ≥ e− 1, we have∑
j≥k,2j≤ηrNT

P

(
sup

θN∈SN,j

[
Ψ̂N (θN )− Ψ̂N (θ

0
N )

]
≥ 0

)

≤ 2
∑

j≥k,2j≤ηT ν

P

(
sup

1≤i≤N
sup

(β,α)∈K×A

∣∣∣∣Ĥi(β, α)−Hi(β, α)

∣∣∣∣ > C62
j−1r−1

NT

)

≤ 2
∑

j≥k,2j≤ηT ν

P

(
sup

1≤i≤N
sup

(β,α)∈K×A

∣∣∣∣Ĥi(β, α)−Hi(β, α)

∣∣∣∣ > 6× 2k−1T−ν
)

≤ 2C4N log(ηT ν)

[
1 +

(
1

T−2(p+2)ν

)]
×
[(

1 +
T 1−d−2ν

C5

)−T d/4

+
2

d
exp

(
− C3T

d(1−ν)
)
+

exp(−C3dT
d(1−ν))

1− exp(−C3dT d(1−ν))

]
≤ 2C4N log(ηT ν)

[
1 +

(
T 2(p+2)ν

22(p+2)(k−1)

)]

×
[(

1 +
T

1
1+d

−2ν4k−1

C5

)−T
d

1+d /4

+
2

d
exp

(
− C3T

( 1
1+d

−ν)d2(k−1)d

)
+

exp(−C3dT
( 1
1+d

−ν)d2(k−1)d)

1− exp(−C3dT
( 1
1+d

−ν)d2(k−1)d)

]
≤ 2C4N log(ηT ν)

[
1 +

(
T 2(p+2)ν

22(p+2)(k−1)

)]
×
[
exp

(
−T

d
1+d /4

)
+

2

d
exp

(
− C3T

( 1
1+d

−ν)d2(k−1)d

)
+

exp(−C3dT
( 1
1+d

−ν)d2(k−1)d)

1− exp(−C3dT
( 1
1+d

−ν)d2(k−1)d)

]
= o(1). (A.82)

Therefore, the desired result follows from (A.79), (A.81), (A.82) and the fact that P (θ̂N ∈ AN ) →
1.

Lemma A.21. Suppose Assumption A1, A3 hold and G > G0. Furthermore, if logN =

o(T
d

2(1+d) ), then
|Ψ̂N (θ̂N )− Ψ̂N (θ

0
N )| = OP (T

− 1
2(1+d) ).

Proof of Lemma A.21. By direct examination and Assumption A1.(e), it yields that

|Ψ̂N (θ̂N )− Ψ̂N (θ
0
N )| ≤

N∑
i=1

∑T
t=1Q(Xit, Yit)

TN
(∥β̂ĝi − β0gi∥

2
2 + |α̂i − α0

i |2)1/2

≤

√√√√ 1

N

N∑
i=1

(∑T
t=1Q(Xit, Yit)

T

)2

√√√√ 1

N

N∑
i=1

(∥β̂ĝi − β0gi∥
2
2 + |α̂i − α0

i |2).

(A.83)

The first second factor in right side of (A.83) is OP (T
− 1

2(1+d) ) by Lemma A.20 with ν = 1
2(1+d) .
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Next we will bound the first factor. By direct examination, we have

E

[(∑T
t=1Q(Xit, Yit)

T

)2]
≤ 2E

[(∑T
t=1[Q(Xit, Yit)− E(Q(Xit, Yit))]

T

)2]
+2E2[Q(Xi1, Yit)]. (A.84)

Utilizing Assumption A1.(b), A1.(e) and Lemma A.9, the right side of (A.84) is uniformly bounded
for all i ≥ 1. As a consequence, we obtaine the desired result.
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