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Abstract

We consider panel parametric, seme-parametric and nonparametric methods of con-

structing counterfactuals. Through extensive simulations, no method is able to dominate

other methods. In general, we find that if the observed data are stationary, the panel semi-

parametric method appears capable of generating counterfactuals close to the (true) data

generating process in a wide array of situations. If the data are nonstationary, then the panel

nonparametric method appears to dominate the parametric or semiparametric approaches.

We also suggest a model averaging method as a robust method to generate counterfactuals.

We compare the different estimates of the impact of California Tabcco Control Program on

per capita cigarette consumption.
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1 Introduction

The measurement of treatment effect for the i-th unit at time t in a panel data set is the differ-

ence between the outcome under the treatment y1it, and the outcome in the absence of treatment,

y0it, ∆it = y1it−y0it. However, y1it and y0it are not simultaneously observed. The major challenge in
the treatment literature is to construct counterfactuals for the missing y1it or y

0
it (e.g., Heckman

and Vytlacil (2007a, 2007b)). Panel data containing time series information for a number of

individuals may provide information about some individuals before and after intervention and

the information about the differences between treated and untreated individuals at a given time.

These information can be combined to get around the issues of selection on observables (e.g.,

Rosenbaum and Rubin (1983))and selection on unobservables (e.g., (Heckman (1979))) without

taking a measurement with theory approach or nonconfoundness in nonparametric approach.

In this paper, we consider the panel parametric, semiparametric and nonparametric approach

for constructing the counterfactuals.

In Section 2, we consider the parametric approach. Section 3 and 4 consider the semi-

parametric and nonparametric approach, respectively. Section 5 considers a model averaging

approach to generate robust estimates of counterfactuals. Section 6 compares the relative per-

formance of three approaches under a variety of data generating processes. Section 7 reexamine

the impact of 1988 California Proposition 99 on per capital cigarette consumption and personal

healthcare expenditure. Concluding remarks are in Section 8.

2 Panel Parametric Approach

Suppose there are observations (yit,xit) for i = 1, . . . , N and t = 1, . . . , T. Let the dummy

variable dit indicate the ith unit’s treatment status at time t with dit = 1 if under the treatment

and dit = 0 if not. The observed data takes the form,

yit = dity
1
it + (1− dit) y0it. (2.1)

For ease of exposition, we assume d1t = 0 for t = 1, . . . , T0 and d1t = 1 for t = T0 + 1, . . . , T,

while dit = 0 for i = 2, . . . , N, and t = 1, . . . , T, i.e., we assume only the first unit is intervened

by the treatment.

We assume y0it is a function of k observable variables, xit,

y0it = x′itβ + vit, 1 ≤ t ≤ T, (2.2)

where β is a k × 1 vector of constants and vit represents the impact of unobserved variables.

We decompose vit as the sum of the impacts of those that are due to idiosyncratic factors, uit,
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and those that are due to r common factors across individuals, ft. We allow the impacts of ft

to be different for different individuals, γi = (γi1, . . . , γir)
′ , an r × 1 vector of constants over

time, i = 1, 2, . . . , N. Thus vit is written as

vit = γ ′ift + uit, (2.3)

Putting the unobserved individual-specific effects, γi, and the common time-specific effects, ft, in

the multiplication form has the advantage over the traditional additive form (e.g., Hsiao (2014))

in that it allows the impact of "globe shock at time t" to be different for different individuals due

to the difference in natural endowment or distinct social or technological background. Moreover,

the traditional additive form is nested within the multiplicative form (Bai (2009), Hsiao (2017)).

The individual-specific effects, γi, and the time-specific effects, ft, can be treated either as fixed

constants (e.g., Bai (2009), Pesaran (2006)) or random (e.g., Sarafidis and Wansbeek (2012)).

When γi and ft are treated as constants, there is no need to specify the data generating processes

of γi and ft, nor their relations with xit.When γi and ft are treated as random variables, specific

assumptions about their data generating process and their relations with observed xit have to

be made, although the inference on β in general is more effi cient for unconditional inference

than the conditional inference on β conditional on γi and/or ft (e.g., Hsiao (2017)).

Following the tradition, we assume the idiosyncratic effects, uit, are random variables with

mean zero and constant variance. We also assume:

Assumption 1: The observed explanatory variables, xit, and the unobserved (γi, ft) , are

strictly exogenous with respect to uit, i.e.,

E (uit|xis, fs,γi) = 0. (2.4)

Assumption 2: uit is independently distributed over t with E (uitujt) = σij and

limN→∞ supi
1
N

∑N
j=1 |σij | <∞.

Assumption 2 allows uit to be weakly cross-sectional dependent (e.g., Chamberlain and

Rothschild (1983), Chudik and Pesaran (2015)). When β, γi and ft are unknown constants,

under assumptions 1 and 2, Bai (2009)’s least squares method are consistent if both N and T

are large. Let Xi = (x′i1, . . . ,x
′
iT )′ , under the assumption that

Assumption 3: f (Xi|dit) = f (Xi) for all i = 1, 2, . . . , N,

we can generate counterfactuals following the steps suggested by Xu (2017):

Step 1: estimate model (2.2) using the observation from the control group only, and obtain

β̂Bai, γ̂i (i = 2, . . . , N) and f̂t (t = 1, . . . , T ).

Step 2: estimate the factor loadings for the treated unit by minimizing the mean squared
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error of the predicted treated outcome in the pretreated periods,

γ̂1 = arg min
γ1

(
y1 −X1β̂Bai − F̂γ1

)′ (
y1 −X1β̂Bai − F̂γ1

)
=

(
F̂′F̂

)−1
F̂′
(
y1 −X1β̂Bai

)
,

where y1 = (y11, . . . , y1T0)
′ , F̂ =

(
f̂1, . . . , f̂T0

)′
and X1 = (x11, . . . ,x1T0)

′ .

Step 3: estimate counterfactuals based on β̂Bai, F̂ and γ̂1 as

ŷ01t = x′1tβ̂Bai + γ̂ ′1f̂t, T0 + 1 ≤ t ≤ T. (2.5)

Consequently, an estimator for the treatment effects on the treated unit (ATT) at time t is

ATTt = y1t − ŷ01t, for t > T0.

3 Semi-parametric Method

For the idiosyncratic error u1t, we note that although E (u1t) = 0, V ar (u1t) ≥ V ar (u1t|ũt)
where ũt = (v2t, . . . , vNt)

′ . Let

u1t = σ′1ũΣ−1ũ ũt + ηt, (3.1)

where σ1ũ = E (u1tũt) and Σũ = E (ũtũ
′
t) . Noticing that

ũt = ỹt − X̃tβ − Γ̃ft, (3.2)

where ỹt = (y2t, . . . , yNt)
′ , X̃t = (x2t, . . . ,xNt)

′ and Γ̃ = (γ2, . . . ,γN )′ .

Under the assumption that

Assumption 4, rank
(

Γ̃
)

= r,

and

Assumption 5, yi ⊥ d1t for i = 2, . . . , N, where yi = (yi1, . . . , yiT )′ ,

then ft can be represented as

ft =
(

Γ̃′Γ̃
)−1

Γ̃′
(
ỹt − X̃tβ − ũt

)
. (3.3)

Substituting (3.1) and (3.3) into (2.2) for the first unit yields

y01t = x′1tβ +

(
γ ′1

(
Γ̃′Γ̃
)−1

Γ̃′ + σ′1ũΣ−1ũ

(
IN−1 − Γ̃

(
Γ̃′Γ̃
)−1

Γ̃′
))(

ỹt − X̃tβ
)

+ η∗t , (3.4)

where

η∗t = ηt −
(
γ ′1 + σ′1ũΣ−1ũ Γ̃

)(
Γ̃′Γ̃
)−1

Γ̃′ũt. (3.5)
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Instead of estimating (3.4), we suggest a data driven method to approximate y01t,

y01t = x′1tβ + w′
(
ỹ∗t − X̃∗tβ

)
+ µ+ ε1t, (3.6)

where
(
ỹ∗t − X̃∗tβ

)
could be a subset of

(
ỹt − X̃tβ

)
and (µ,w′) are unrestricted. Thus, we

suggest the following steps to generate counterfactuals:

Step 1: Use pretreatment data and Bai (2009) or Pesaran (2006) method to estimate β,

denoted by β̃.

Step 2: Conditional on β̃, obtain µ and w by minimizing

min
µ,w

T0∑
t=1

[
y1t − x′1tβ̃ −w′

(
ỹ∗t − X̃∗tβ

)
− µ

]2
, (3.7)

When N is large, the subset
(
ỹ∗t − X̃∗tβ

)
can be chosen using some model selection criterion

as in Hsiao et al. (2012).

Step 3: Generate counterfactuals by

ỹ01t = x′1tβ̃ + ŵ′
(
ỹ∗t − X̃∗tβ

)
+ µ̂, T0 + 1 ≤ t ≤ T. (3.8)

Remark 3.1 The parametric approach needs both N and T large to get reliable estimates of

β, γ1 and ft, which is a luxury to meet in many applications. In many applications, T is finite,

but N could be large. In this case, we can consider using the Pesaran (2006) common correlated

effects (CCE) estimator to get consistent estimator of β, namely, β̂CCE . Under the assumption

that xit is generated by the same set of unobservable common factors and certain rank condition

(e.g., Pesaran (2006)), the CCE estimator β is give by

β̂CCE =

(
N∑
i=1

X′iMZ̄Xi

)−1 N∑
i=1

X′iMZ̄yi, (3.9)

whereMZ̄ = IT0−Z̄
(
Z̄′Z̄

)−1
Z̄′ with Z̄ = (z̄1, . . . , z̄T0)

′ and z̄t = 1
N

∑N
j=1 zjt = 1

N

∑N
j=1 (yit,x

′
it)
′ .

Following either Pesaran (2006) or Zhang and Zhou (2016), it can be shown that the CCE es-

timator of β is consistent as long as N →∞.

Remark 3.2 The advantage of generating counterfactuals by (3.8) is that we can use the re-

gression method to obtain µ and w to avoid the infinite dimensional issues associated with

"distributional free" method (e.g., Li and Racine (2007)). It is simple to implement and easy

to construct the confidence band for "treatment effects" (e.g., Fujiki and Hsiao (2015)).
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4 Nonparametric Method

4.1 Synthetic Control Method (SCM)

Abadie et al. (2010) has proposed to predict y1t by

ŷ∗1t = w′ỹt =
N∑
i=2

wiyit, T0 + 1 ≤ t ≤ T, (4.1)

where w = (w2, . . . , wN )′ are obtained by minimizing the distance,√
(M1 −M0w)′V (M1 −M0w), (4.2)

subject to

y1t =

N∑
i=2

wiyit, 1 ≤ t ≤ T0, (4.3)

x̄1k =
N∑
i=2

wix̄ik, 1 ≤ k ≤ K, (4.4)

and

wi ≥ 0 and
N∑
i=2

wi = 1, (4.5)

where M1 and M0 are (T0 +K)× 1 vector and (T0 +K)× (N − 1) matrix of preintervention

observations of (y1t, x̄1)
′ and (yjt, x̄j) , respectively, x̄j denotes the time series mean of K

covariates, xit, and V is a positive definite matrix.

4.2 Panel Data Approach (PDA)

Under the assumption that yjt and xit are independent of d1t, Hsiao et al. (2012) propose to

predict y01t by

ỹ∗1t = µ+ δ′z∗t , T0 + 1 ≤ t ≤ T, (4.6)

where z∗t includes any (yjt,x1t) that helps to predict y01t.

Remark 4.1 The emphasis of the SCM is to find control units that are similar to the treatment

unit, then take a weighted average of such control units to generate counterfactuals (constraints

(4.3)-(4.5)). On the other hand, the PDA puts the emphasis on the accuracy of predicting

the outcomes of the treatment unit. It does not require the predictors to be similar to the

treatment units as long as they help prediction. The only requirement is that the control units
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are independent of the treatment (Assumption 3 and 4)1. In the regression framework, the PDA

is an unconstrained regression while the SCM is a constrained regression. When the constraints

are valid, SCM is a more effi cient method. When the constraints are not valid, SCM could lead

to biased prediction of counterfactuals (Wan et al. (2018)).

5 Model Averaging

The above sections discussed parametric, semi-parametric and nonparametric ways of con-

structing counterfactuals. Each has its advantages and disadvantages. Unfortunately, neither

the conventional hypothesis testing approach, nor the predictive approach (e.g., Diebold and

Mariano (1995), White (2000)) appears feasible to assess the appropriateness of which method

is more likely to generate more accurate counterfactuals in a given situation because counterfac-

tuals are unobservable. Bates and Granger (1969) have argued that even the most complicated

model is likely to be misspecificed and combining forecasting across different models is a way

to make the forecast more robust against misspecification biases and measurement errors in

the data. Many authors have suggested different methods to combine forecasts (e.g., see the

survey by Timmermann (2006)). Most of these methods depend on the relation between the

actuals and forecasts while in our case the actuals are unobservable. On the other hand, the

simulation and an empirical example conducted by Hsiao and Wan (2012) appear to indicate

that no method is able to yield more accurate forecasts uniformly over time in a wide array of

situations. A mean or a mean and scale correlated simple average appear to be a robust way

to combine forecasts. Therefore, we suggest the following two ways to combine the different

methods of generating counterfactuals.

Let ȳt = 1
M

∑M
j=1 ŷjt where ŷjt denote the within sample or post-sample predicted value of

y1t based on j-th method.

(M1) Mean corrected simple average method

ŷ1t = a+ ȳt, t = T0 + 1, . . . , T, (5.1)

where a

a =
1

T0

T0∑
t=1

(y1t − ȳt) , t = 1, . . . , T0. (5.2)

(M2) Mean and scaled corrected simple average method

ŷ1t = a+ bȳt, t = T0 + 1, . . . , T, (5.3)

1The SCM also needs these two assumptions to ensure the generated predictions are ubiased if (4.5) holds.
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where a and b are the least squares estimates of y1t on the constant and ȳt for the pretreatment

period.

6 Simulation Studies

The treatment effects is measured as the difference between y1it and the predicted y
0
it. Since

the true data generating process (DGP) is unknown, the only way to consider which method

is more likely to yield more accurate y0it in a wide array of situations is through computer

simulations. In the DGPs below, we assume the common factors f1t, f2t and f3t are iidN(0, 1)

unless they are specified in the DGP, the factor loadings γ1,i, γ2,i and γ3,i are also iidN(0, 1).

The coeffi cients are set as β1 = 1, and β2 = 2. The DGPs are designed as follows,

DGP1: Model with exogenous variables and common factors

yit = x1,itβ1 + x2,itβ2 + γ1,if1t + γ2,if2t + γ3,if3t + uit. (6.1)

The covariates xk,it (k = 1, 2) are (positively) correlated with a subset of factors as follows

xk,it = 1 + ρkixk,it−1 + c1iγk,i + c2ifkt + εit, k = 1, 2,

where ρk,i ∼ iidU (0.1, 0.9) , c1i and c2i are iidU (1, 2) and the error term ηit is iid
(
χ2(1)− 1

)
.

DGP2: Model with exogenous variables and common factors

yit = x1,itβ1 + x2,itβ2 + γ1,if1t + γ2,if2t + uit. (6.2)

The covariates xk,it (k = 1, 2) are (positively) correlated with the factors and extra factors as

follows

xk,it = 1 + ρkixk,it−1 +
3∑
j=1

cjfjt + ηk,it, k = 1, 2,

where ρk,i ∼ iidU (0.1, 0.9) , cj ∼ iidU (1, 2) and the error term ηit is iid
(
χ2(1)− 1

)
.

DGP3: Model with exogenous variables and common factors

yit = x1,itβ1 + x2,itβ2 + γ1,if1t + γ2,if2t + uit. (6.3)

The covariates xk,it (k = 1, 2) follow an ARMA process as

xk,it = 1 + ρkixk,it−1 + ηk,it + ρηiηit−1, k = 1, 2,

where ρk,i and ρηi are iidU (0.1, 0.9) and the error term ηk,it is iidN(0, 1).

DGP4: DGP1 with two cointergrated factors
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{
f1t = 0.5f2t + ξ1t
f2t = f2t−1 + ξ2t

, (6.4)

where ξ1t and ξ2t are iidN(0, 1).

DGP5: Cointegrated models

y1t =
N∑
j=2

yjtβj + u1t, (6.5)

yjt = yjt−1 + vjt,

βj ∼ iidU (0, 1) .

DGP6: Pure factor model

yit = γ1,if1t + γ2,if2t + uit. (6.6)

with f1t and f2t are iidN(0, 1).

DGP7: Pure factor model (6.6) with f1t and f2t following random walk processes.

For these seven DGPs, following Stock and Watson (2002), we assume the error term uit

are weakly cross sectionally dependent

uit =
(
1 + b2

)
vit + bvi+1,t + bvi−1,t,

vit ∼ iidN(0, σ2i ),

where σ2i being random draw from 0.5
(
χ2 (1) + 1

)
and we let b = 1.

DGP 1 and 2 are parametric specifications with the DGP for x satisfying the Pesaran (2006)

CCE condition, i.e., z̄t captures the variation of f1t and f2t. DGP 3 is a parametric specification

with the DGP for x independent of ft (i.e., the Pesaran CCE does not capture the cross-sectional

dependence). DGP 4 is also a parametric specification with one of the two factors following a

unit root process. DGP 5 is a cointegrated model. DGP 6 is a factor model with stationary

factors. DGP 7 is also a factor model with factors following random walk processes. However,

since r = 2, yit are cross-sectional cointegrated.

The treatment and control groups consist of 1 and N − 1 units. The treatment on unit 1

starts at time T0 + 1. The other (N − 1) units are not subject to treatment. We let N − 1 be

30, 50 and the pretreatment time T0 = 30, 50, and post treatment periods T − T0 = 10, i.e.,

T = 40, 60. The number of replication is set at R = 1000.

We consider several estimators for the above DGPs2 ,3,
2 In the simulation and estimation of (generalized) synthetic control method and PDA approach, we use the

"gsynth" package by Xu and Liu (2017), and the "pampe" package by Vega-Bayo (2015) in R, respectively.
3We do not consider SCM in the simulation and estimation because our data generating processes do not
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(E1) PCA: Estimate model (2.2) by Bai (2009)’s least squares method, then generate ŷ1t
by (2.5).

(E2) PCCE: Estimate model (2.2) by Pesaran (2006)’s CCE method, then estimate γi and

ft by principle component (PC) method, and generate ŷ1t by (2.5).

(E3) CCE: Using the CCE method to estimate β, then generate ŷ1t by using (3.8) through

(3.7).

(E4) CPDA: Using the CCE method to estimate β, then use the PDA approach to select

a subset of
(
ỹt − X̃tβ

)
as predictors.

(E5) PDA: Use Hsiao et al. (2012) PDA method to generate predictor for T0 + 1, . . . , T

using the observations on ỹt (t = 1, . . . , T0) only.

(E6) PDAX: Use Hsiao et al. (2012) PDA method to generate predictor for T0 + 1, . . . , T

using the observations on x1t and ỹt (t = 1, . . . , T0).

(E7) M1AV6: Use the mean corrected simple average of (E1)-(E6).

(E8) M1AV5: Use the mean corrected simple average of (E1) and E(3)-(E6).

(E9) M2AV6: Use the mean and scaled corrected simple average of (E1)-(E6).

(E10) M2AV5: Use the mean and scaled corrected simple average of (E1) and E(3)-(E6).

For the above parametric estimators E1 and E2, we assume the dimension of ft, r, is un-

known. We estimate r following Xu (2017)’s cross-validation method, then implement E1 and

E2. For CPDA, PDA and PDAX, we use a model selection procedure to select a subset of

control units to generate counterfactuals. Model selelction procedure performs well if T0 > N.

If N is greater than T0, it does not work well (e.g., Wan et al (2018)). Therefore, when N is

large relative to T0 (N = 50), we suggest the following two methods to select control units as

predictors:

(Ma) Combining stepwise regression method with model selection method to select predic-

tors:

Step 1: Run the regression of y01t on each of the control units. Select the one that yields the

highest R2, say yjt.

Step 2: Run the regression of y01t on yjt and each of the remaining control units. Select

the pair that yields the highest R2, say yjt and ylt. Use the model selection criterion to decide

whether one should just use yjt as the predictor or one should use both yjt and ylt as predictors.

If the model with yjt only is selected, then stop the process.

Step 3: If (yjt, ylt) are chosen as predictors, run the regression of y01t on yjt and ylt and each

of the remaining control units, choose the triplet (yjt, ylt, ymt) as the predictors and compare the

satisfy (4.3)-(4.5). Also, the simulations conducted by Wan et al. (2018) appear to favor PDA in a wide array

of situations.
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performance of the model using (yjt, ylt, ymt) with the model using (yjt, ylt) only as predictors.

If the former model is selected, stop the process. If the latter is selected, continue the process

until the model consists of k predictors is chosen over the model consists of (k + 1) predictors

by some model selection criterion.

(Mb) Random Splitting Method

Step 1: Randomly split up the control units into G mutually exclusive subset: Z1, . . . ,ZG.

Step 2 For each subsets, use some model selection method, say AIC or AICC, to select the

best predictors within each group, say, Z∗1, . . . ,Z
∗
G.

Step 3: Pool Z∗1, . . . ,Z
∗
G to form a new set of control units, Z̃. If the dimension of Z̃ is

smaller than T0, then apply some model selection criterion to select the best predictors from

Z̃. If the dimension of Z̃ is still close to T0, repeat the steps on Z̃.

For the DGP considered here, we find method (Ma) on average performs marginally better

than method (Mb) when yit is stationary. When yit is nonstationary, method (Mb) performs

substantially better.4

We consider three criterion for comparison: the mean of absolute error for the true ob-

servation and the counterfactuals at each post treatment date point (MAB), the mean of the

sum of squared error for the true observation and the counterfactuals at each post treatment

date point (MSE ), and the mean of the ratio of absolute counterfactuals and absolute true

outcomes at each date point in the treatment period (MAP). We consider the performance of

constructing the counterfactuals of y1t (t = T0+ 1, . . . , T ) by using the approaches E1-E10. For

N = 50, when yit is stationary, we use the stepwise method to select predictors. When yit is

nonstationary, we use the random split method by first splitting the sample randomly into two

groups (G = 2). The simulation results are summarized in Table 1-7. We also plot the root

mean square errors of different methods for DGP 1-7 when N = 30 and T = 40 in Figure 1-7.

In general, we find that

(i) When using parametric form (2.5) as predictors, the method based on Bai (2009) out-

performs the Pesaran (2006) CCE method of first estimating the slope coeffi cient of x, then

applying the PC method to obtain γi (PCCE) .

(ii) When using the semi-parametric form (3.6) to generate counterfactuals, using the com-

plete set of
(
ỹt − X̃tβ

)
yields less accurate predictors than using a subset of

(
ỹt − X̃tβ

)
through some model selection criterion (CCE vs CPDA).

(iii) When using the nonparametric form to generate counterfactuals, applying Hsiao et al.

(2012) method based on the extended control pool consisting of both yjt, and the treatment

unit strictly exogenous variables (PDAX) outperforms the application of Hsiao et al. (2012)

4Details available upon request.
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method with control pool consists of yjt only.

(iv) When data are stationary and T0 ≥ N, then the semiparametric predictor (3.8) gen-

erates more accurate counterfactuals than both the parametric and nonparametric predictors,

often by substantial margin except in the case when N > T0. When (y1t, . . . , yNt) are non-

stationary and cross-sectionally cointegrated, the nonparametric method appears to dominate.

However, even in this case, the semi-parametric predictor (3.8) performs reasonably well and

still dominates the parametric predictor (2.5).

(v) No method is able to dominate all other methods in all different data generating processes

all the times. Model averaging method appears to be a robust way to construct counterfactuals

for a wide array of situations.

7 California’s Tobacco Control Program (CTCP) Revisited

In November 1988, California passed the Proposition 99 that increased California’s cigarettes

tax by 25 cents per pack and earmarked the tax revenue to health and anti-smoking measures.

Proposition 99 also trigged a wave of local clean-air ordinances in California. Abadie et al.

(2010) have shown that there was a significant impact of California Tobacco control program

(CTCP) on per capita cigarette consumption for the period 1970-2000 and its impact continued

to enhance over time using the synthetic control method (SCM). In this section, we revisit

the effectiveness of CTCP on per capita cigarettes consumption and on personal healthcare

expenditure using the panel parametric, semi-parametric and nonparametric methods discussed

in this paper.

The observable factors that are likely to affect cigarettes consumption or personal healthcare

expenditure are per capita GDP, cigarettes price, demographic composition, etc.. However,

cigarettes price etc., could be affected by cigarettes tax, so we shall only use per capita GDP as

observable exogenous factor and treat all others as unobservable factors in the counterfactual

analysis.

For the observed per capita cigarette consumption or healthcare expenditure, we follow

Abadie et al. (2010) to exclude the four states (Massachusetts, Arizona, Oregon, and Florida)

that adopted some other large-scale tobacco control program and seven states (Alaska, Hawaii,

Maryland, Michigan, New Jersey, New York, Washington) that have raised their state cigarette

taxes by 50 cents or more over the 1989 to 2000 period. The District of Columbia is also excluded

from our sample. Thus, our control group includes 38 states. The data is collected between

1970-2000 for cigarette consumption and 1980-2000 for personal healthcare expenditure.5

5We didn’t include the extra variables as in Abadie et al (2010) because they contain lots of observations are
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In our sample, N (= 38) is greater than T0 (T0 = 19 for cigarette consumption, T0 = 9 for

personal healthcare expenditure). Technically, it is hard to implement CCE. For CPDA, PDA

and PDAX, we use the random split method discussed in Section 6 to select the subset of units

to generate counterfactuals.

Table 8 provides the actual and estimated counterfactuals for cigarettes consumption per

capita based on (E1)-(E10) excluding PCCE, M1AV6 and M2AV6.6 Figure 8 plots the difference

between the actual outcomes and the counterfactuals excluding those from PCCE, and replace

M1AV6 and M2AV6 by M1AV5 and M2AV5, which are averages of PCA, CCE, CPDA, PDA

and PDAX. As one can see, in general, CCE provides the lower bounds of the counterfactuals,

the PDAX and PDA provide the upper bound, and the CPDA (the method that appears to

yield counterfactuals closest to the unknown data generating process in our simulation) yields

counterfactuals are in the middle. Thus, according to CCE, there was a small discouraging

impact of 1988 tax increase and its impact tends to stay constant over time. On the other

hand, based on PDA and PDAX, the CTCP has the expected discouraging effect on cigarette

consumption and its impact appears to aggravate over time. The average of different methods’

estimates indicates that the CTCP does have a negative impact on cigarette consumption.

However, the negative effects appear to be much smaller absolute magnitude than those obtained

by PDA, PDAX or SCM of Abadie et al (2010) (e.g., often less than half).

Since counterfactuals are unobservable, it is hard to know which estimates are close to the

true treatment effects. We therefore propose to use indirect evidence to gauge which esti-

mates could be closer to the true treatment effects. From the established medical link between

cigarette consumption and lung cancer, and the link between cancer treatment and healthcare

expenditure, we assume studying California residents’personal healthcare expenditure could

shed light on this. To avoid the outcomes being contaminated by the treatment, again, like

the study of cigarette consumption, we only use the personal healthcare expenditure for the 39

states from 1980-2000 and include per capita income as an additional control variable.7

Table 9 and Figure 9 provides the actual and estimated counterfactuals for personal health-

care expenditure based on (E1)-(E10) and their plots during the treatment period. As we can

see from Table 9, all different methods yield similar counterfactuals. They appear to show that

there is no significant decrease in personal healthcare expenditure.

missing and we are unable to recover the missing observations. The data of personal healthcare expenditure is

collected from National Health Service (NHS) website.
6The reason of exclusion of these three method is that the PCCE yields unbelivably high estimate of the

coeffi cient of per capita income. The detailed results of PCCE, M1AV6 and M2AV6 are available upon request.
7We exclude sales of cigarette and retail prices of cigarettes as conventionally assumed because they are likely

to be affected by treatment.
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Using the healthcare expenditure information as corroborating evidence, it appears that

although there appears a discouraging effect of the CTCP on per capita cigarette consumption,

contrary to the common belief, their impact and their absolute magnitude could be less than

conventionally estimated.

8 Concluding Remarks

Using observed data to empirically estimate the treatment effects is challenging. Techniques

of statistical analysis are based on certain maintained hypothesis. In this paper, we have con-

sidered panel parametric, seme-parametric and nonparametric methods of constructing coun-

terfactuals. Our simulation results show that if the observed data are stationary, the panel

semi-parametric method appears capable of generating counterfactuals close to the (true) data

generating process in a wide array of situations. If the data are nonstationary, then the panel

nonparametric method appears to dominate the parametric or semiparametric approaches.

However, no method appears capable of dominating other methods in different data generating

processes and different sample configurations of cross-sectional dimension N and pre-treatment

time dimension T0. Since the true data generating process is usually unknown and statistical

findings could be very different for different situations, we have also suggested a model averaging

method as a robust method to generate counterfactuals.

We have reexamined the impact of California Tobacco Control Program on per capita ciga-

rette consumption using the methods studied in this paper. Our results show that the estimates

are sensitive to the method used. However, using the model averaging method and the study

of per capita cigarette consumption as corroborating evidence, it appears that the impact of

the California 1988 proposition could be over estimated. There was a moderate discouraging

effects, but less than half of the conventionally estimated.

Statistical analysis is not a proof of reality. Information contained in the data may be

limited. Statistical inference could be fragile and sensitive to inferential procedures. We have

to think of as many consequences of the underlying assumptions as possible. We must report

our findings with a great deal of humility. We have to realize we are still in the process of

groping toward the truth, not discovering the truth.
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Figure 1: Plot of RMSE of different methods for DGP1 when N = 30 and T = 40
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Figure 2: Plot of RMSE of different methods for DGP2 when N = 30 and T = 40
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Figure 3: Plot of RMSE of different methods for DGP3 when N = 30 and T = 40
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Figure 4: Plot of RMSE of different methods for DGP4 when N = 30 and T = 40
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Figure 5: Plot of RMSE of different methods for DGP5 when N = 30 and T = 40
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Figure 6: Plot of RMSE of different methods for DGP6 when N = 30 and T = 40

1 2 3 4 5 6 7 8 9 10
Posttreatment T ime Period

0

2

4

6

8

10

12

14

R
M

SE

PCA
PCCE
CCE
CPDA
PDA
PDAX
M1AV6
M1AV5
M2AV6
M2AV5

27



Figure 7: Plot of RMSE of different methods for DGP7 when N = 30 and T = 40
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Table 8: Comparison of actual and counterfacutal cigarettes consumption

Year Actual SCM PCA CCE CPDA PDA PDAX M1AV5 M2AV5

1989 82.4 88.8 83.1 84.6 87.9 89.3 89.3 86.8 86.9

1990 77.8 86.7 82.3 79.9 83.0 86.4 86.4 83.6 83.6

1991 68.7 81.8 68.5 71.9 74.6 80.9 80.9 75.4 75.4

1992 67.5 81.3 69.4 70.1 73.8 79.9 79.9 74.6 74.6

1993 63.4 81.1 66.1 67.5 77.8 84.0 84.0 75.8 75.8

1994 58.6 80.7 63.6 62.6 76.4 82.6 82.6 73.8 73.8

1995 56.4 78.0 63.6 62.4 71.4 78.4 78.4 70.8 70.8

1996 54.5 77.1 64.6 62.8 74.2 81.1 81.1 72.7 72.7

1997 53.8 77.3 66.5 62.3 74.7 81.9 81.9 73.5 73.5

1998 52.3 73.7 62.7 60.7 71.4 76.5 76.5 69.5 69.5

1999 47.2 73.1 57.6 58.9 71.5 76.5 76.5 68.2 68.2

2000 41.6 66.8 52.3 54.8 71.2 75.6 75.6 65.9 65.9

MAB 18.5 6.42 6.20 15.3 20.7 20.7 13.8 13.8

Notes: MAB is defined in Table 1 and "SCM" refers to the counterfactals replicated from Abadie et

al (2010).

Table 9: Comparison of actual and counterfacutal personal healthcare expenditure

Year Actual PCA CCE CPDA PDA PDAX M1AV5 M2AV5

1989 8.9944 9.0115 8.9835 8.9974 8.9936 8.9936 8.9959 8.9960

1990 9.1201 9.1523 9.0945 9.1144 9.1099 9.1099 9.1162 9.1162

1991 9.2415 9.3033 9.1866 9.2117 9.2075 9.2075 9.2233 9.2218

1992 9.3173 9.3835 9.2522 9.2629 9.2841 9.2841 9.2931 9.2932

1993 9.3826 9.4569 9.3103 9.3201 9.3508 9.3508 9.3578 9.3578

1994 9.4416 9.5255 9.3606 9.3662 9.4067 9.4067 9.4132 9.4132

1995 9.5064 9.5850 9.4341 9.4285 9.4791 9.4791 9.4812 9.4812

1996 9.5681 9.6480 9.4933 9.4631 9.5401 9.4791 9.5369 9.54369

1997 9.6352 9.7163 9.5642 9.5299 9.6052 9.6052 9.6042 9.6042

1998 9.6581 9.6989 9.6341 9.5998 9.6781 9.6781 9.6578 9.6578

1999 9.6934 9.7005 9.7042 9.6627 9.7388 9.7388 9.7090 9.7090

2000 9.7556 9.7416 9.7923 9.7359 9.8072 9.8072 9.7768 9.7769

MAB 0.0531 0.0500 0.0522 0.0288 0.0288 0.0187 0.0187
Notes: MAB is the defined in Table 1.
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Figure 8: Difference between actual and counterfactual cigarette consumption in treatment period
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Figure 9: Actual and counterfacutal healthcare expenditure in treatment period
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