College of Engineering Department of **Mechanical & Industrial Engineering**

College of Engineering School of Electrical Engineering & Computer Science

To Predict ► To Design ► To Perform

ME, ECE Capstone Design Programs

Ex∕onMobil

Team #43: Beach Accessibility for a Young Woman in a Wheelchair Jack Rettig

Qusai Al Lawati, Julian Bordelon, Kyle Jordan, Brian Tanh, Blaize VanSickel

Objective

Design and manufacture a motorized wheelchair to allow customer to access the beach.

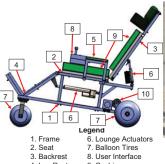
Background

- Special Needs Individual with Muscular Dystrophy
- Requires Assistance to Access the Beach
- Family Beach Vacation

Measurable Engineering Specifications Specification Value Results Run Time 8 hours 7.4 hours

Weight	90lbs	105lbs
Size	3ft x 6ft	2.83ft x 4.5ft
Recline	95° - 135°	100°-133.7°
Speed	1.1 mph	1.5mph

Safety Considerations


- · Electrical connections will be waterproofed
- Secure during transportation
- · Pinch points will blocked off

Research

Concept Generation

- Sharp edges will be filleted or covered
- Straps will be used to prevent customer from slipping and falling out of chair

Septembe

4. Leg Rest 9 Cushions 5 Armrest 10. Drive Trail

Ordering of Parts

Power Analysis

Design Overview

Note: Drive Motors and Lounge Actuators will be used separately and intermittently

Component	Current	Voltage	Power	
Drive Motors	15.33 A	24 V	368 W	
Lounge Actuators	10 A	12 V	120 W	
Battery Indicator	0.0667 A	24 V	15 W	
Arduino Mega	0.0250 A	9 V	0.2250 W	
Joystick	0.0100 A	5 V	0.0500 W	
Receiver	0.0100 A	5 V	0.0500 W	
Switches	0.0025 A	5 V	0.0125 W	
Max Power			384 W	
Battery Capacity		960 Wh		
Continuous Run Time			2.5 hours	
ber December January February				

Begin Manufacturing

Begin Component

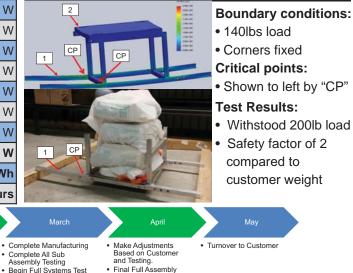
Testing

Complete Component

Begin Sub Assembly

Testing

Testing


Codes and Standards

Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) WC-1 & WC-2: 2009 Summarv:

Testing procedures to determine Maximum Speed, Acceleration, Deceleration, Static Stability, and Dynamic Stability

Budget				
Mechanical	Cost	Electrical	Cost	
Frame	\$ 884.89	Motors	\$ 1312.57	
Drive Train	\$ 788.08	Power	\$ 1104.32	
Seat	\$ 459.91	Controls	\$ 428.05	
Mechanical Total	\$ 2132.88	Electrical Total	\$ 2844.94	
Est. Project Total		\$ 4977.82		
Available Funding		\$ 1500.00		
Fundraising Amount		\$ 3477.82		

Static Load Analysis and Testing

Sponsor: Dr. Daphne Hartzheim

Octobe

Analysis

Manufacturing Plan

Safety and Testing

Concept Selection

Advisor: Dr. Harris Wong