College of Engineering Department of **Mechanical & Industrial Engineering**

College of Engineering School of Electrical Engineering & Computer Science

To Predict ► To Design ► To Perform

ME, ECE Capstone Design Programs

Team #33: 2018 Shell Eco-Marathon

Kevin Castrinos • Brendan Costner • Ziyad Frangie • Aminat Momodu • Mark Loreno • Nathan Richardson • Brent

Villavaso

Safety Specifications

- Electric equipment properly fused
- Internal /external kill switches
- Exhaust gases directed outside of the vehicle
- Chain guard for transmission
 - Fireproof metal tray for Lithium Iron battery

The plot above shows the distance

 $(Vmax^2 - 214)$

2 * Accel

(1586 - Vmin²)

2 * A2

 $Ff + W * sin\Theta + Fdrag$

mass of vehicle

Shell Eco-

Marathon

Competition

April

covered while accelerating and

Competition

Readv

Prototype

Vehicle in April

Driving Strategy

- Find an efficient speed range
- Accelerate to desired maximum speed
- Shut engine off
- Coast to desired minimum speed
- Start the engine
- Repeat the cycle

(Feng-Ff-Fe-Fdrag)*vPower

 $Ff = W^*mu^*cos\Theta$ Fengine = Pengine/v $Fdrag = 0.5*cd*af*v^2$ Fe =W*sinO v = velocity of car

550

Objective

- Compete in, and win, 2018 the Shell-Eco Marathon competition
- Design, build, and test ultra-energy efficient vehicle
- Using the previous year's body and chassis, perform analysis to design, implement, and test a power train
- Develop an energy consumption model to achieve an efficient driving strategy

Engineering Specifications

Average Speed	15 mph
Horsepower	1.5 hp
Torque	15-18 lb-ft
Transmission Gear Ratio	14:1-18:1
Miles Per Gallon	1,500 mpg
Drivetrain Weight	15 lbs

Engineering Requirements

- . Must use body and chassis from 2017 team
- Electronic fuel injection
- Clutch for idling purposes
- Fuel provided by competition, no additives

FEA Analysis

Static FEA analysis done on chassis to analyze the effects of the forces on the car

Complete

Procurement

Process by

December

Drivetrain force = 12lbs

Complete

Design Selection

by October

- . Distributed pressure from driver weight: P = W/2LD = 3.515 psi
- Max deformation = 0.964 psi

Running Vehicle

by February

Advisers: Dimitris Nikitopoulos, Shyam Menon, Taylor Robnet, Steven Rogeou

Tune and Test

Vehicle through

March

