To Predict > To Design > To Perform

ME, ECE Capstone Design Programs

Team \#33: 2018 Shell Eco-Marathon

Kevin Castrinos • Brendan Costner • Ziyad Frangie •Aminat Momodu • Mark Loreno • Nathan Richardson • Brent Villavaso

Objective

Compete in, and win, 2018 the Shell-Eco Marathon competition
Design, build, and test ultra-energy efficient vehicle
Using the previous year's body and chassis, perform analysis to design, implement, and test a power train Develop an energy consumption model to achieve an efficient driving strategy

Engineering Specifications	
Average Speed	15 mph
Horsepower	1.5 hp
Torque	$15-18 \mathrm{lb}-\mathrm{ft}$
Transmission Gear Ratio	$14: 1-18: 1$
Miles Per Gallon	$1,500 \mathrm{mpg}$
Drivetrain Weight	15 lbs

Engineering Requirements

Must use body and chassis from 2017 team

- Electronic fuel injection

Clutch for idling purposes
Fuel provided by competition, no additives

FEA Analysis

- Static FEA analysis done on chassis to analyze the effects of the forces on the car
- Drivetrain force $=12 \mathrm{lbs}$
- Distributed pressure from driver weight:

$$
\mathrm{P}=\mathrm{W} / 2 \mathrm{LD}=3.515 \mathrm{psi}
$$

- Max deformation $=0.964 \mathrm{psi}$

December

Safety Specifications

- Electric equipment properly fused
- Internal /external kill switches
- Exhaust gases directed outside of the vehicle
- Chain guard for transmission

Fireproof metal tray for Lithium Iron battery

Jack Rettig

Driving Strategy

- Find an efficient speed range
- Accelerate to desired maximum speed
- Shut engine off
- Coast to desired minimum speed
- Start the engine
- Repeat the cycle

- The plot above shows the distance covered while accelerating and coasting for a flat track Acceleration distance $=\frac{\left(V \max ^{2}-214\right)}{2 * \text { Accel }}$ Deceleration distance $=\frac{\left(1586-V \min ^{2}\right)}{2 * A 2}$

