ME, ECE Capstone Design Programs

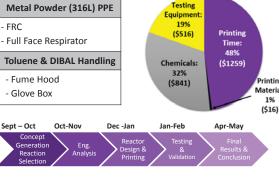
Team 13: 3D-Printed Micro Reactor

Grant Doucet (ME), Errin O'Connor (ME), Andrew Peterson (ChE), Michael Rabalais (ME)

Objective

Design, fabricate and test a compact, metal 3D printed, continuous-flow micro reactor for specialty chemical production

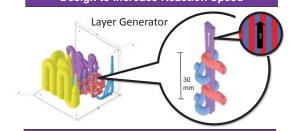

Continuous-Flow Micro Reactor Benefits


Decrease diffusion time/Increase reaction speed

Accelerate chemical development processes

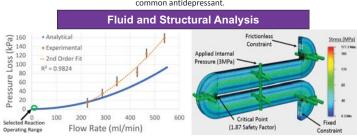
Well-suited for pharmaceutical applications

Functional Requirement	Measurable Engineering Specs.	Design/Limit	√ Pass X Fail
Maximize Production Rate	Flow Rate	~2.5 mL/min	√ (2.7 mL/min)
	Max Pressure Differential	≤ 200 kPa	√ (~ 200 Pa)
	Yield	≥ 95%	√ (90 ±6%)
	Residence Time	~ 16 min	✓
Lightweight	Max Size	90x90x80 mm ³	✓
	Max Weight	< 1300 g	√ (~ 300 g)
Safe/Reliable	Max Pressure	3 MPa	N/A
	Min. Leak Pressure	300 kPa	✓



Continuous-Flow Micro Reactor Outlet Manifold Mixing Channe Reaction Channe **CAD Model**

Design to Increase Reaction Speed


Acrylic Coated Printed Micro Reactor

Reaction Selection

3-chloropropiophenone 3-chloro-1-phenyl-1-propanol (Toluene) $\Delta H_{rxn} \sim 3.8 \frac{kJ}{mol}$ ΔT ~20 °C

The product is an intermediate used in the synthesis of Prozac, a common antidepressant.

3D Metal Printing is NOT Trivial Support Powder Sealing Removal Generation

Geometric and support design for printability

Design to prevent blockages

Sealing required due to porous print material

support placement

Defect due to improper Defects due to improper Dye seeping through STL processing

porous print material

Preliminary Reaction Testing

Advisers: Dr. Devireddy, Mr. Dinecola, Dr. Dooley, Dr. McPeak

Budget Spent: \$2632 Total Budget: \$4000