To Predict > To Design > To Perform

ME, ECE, IE Capstone Design Programs

ConvisionTEC Team #26: Particle Mobility Studies in Porous Media David Breaux, Scott Davis, Kyle Lambert, Garrett Sibley

Background Information [1]					Objective Stateme					
Original Sandstone CT Scan Simplified 2.5D Geometry Guiding Structures Str						Create a transparent 3-D printed micromode 1. Exhibits both flow and geometric similarity to 2. Supports multi-phase flow 3. Measures particle and fluid velocities with ex- 4. Measures pressure drop across device				
Guiding Structures						Fin	al Embodi	iment –	15:1 \$	
 Sandstone sample simplified for manufacturing by depth averaging; manufactured by hot embossing with brass mold Test cell resulted in moderate out of plane velocities, a feat previously unachieved in microfluidic devices 3D Test Cell and Micromodel project initiated for a better understanding of 3-dimensional flow behavior in porous media 						 Thin Model Models printed on P4 Mini SLA printer First Iteration: used for testing and validation Representative of 0.25mm of reservoir rock Thick Model Final Iteration Representative of 0.625mm of reservoir rock 1.25mm total is needed for REV 				
							Geon	netric Va	alidat	
 Reservoir Character Enhanced CO₂ Sequence Category 	Reservoir Rock • Lab-on-a-chip Technology Characterization • Filtration Enhanced Oil Recovery (EOR) • Filtration CO2 Sequestration • Engineering Specifications Category Specification Target Thin Model				Thick Det	sign	Thick P	Trinted	9 mm •	
General Requirements	Supports Multi-Phase Flow		\checkmark	\checkmark	-	Fluid 7				
	Reynolds Number < 0.1 Velocity Measurement - x,y		 ✓ ✓ 	\checkmark		Micro Particle Image Velocimetry (microPIV) • Inject micro-particles				
Geometric Similarity	% Overlap Smallest Feature Printed*	> 80% 15 µm	75-85% 30 μm	65-75% 35 μm		•	model Capture rapid, s images of partic specified locatic	successive cle motion at		
Flow Similarity	Velocity Error - x,y direction	< 0.1 SSE	< 0.3	N/A		•	Calculate partic	le speed	Experin	
	Permeability - % error	< 10%	61%	N/A			images and cha	ange in	= 60 µn	
*Actual value possibly lower; limited by CT scan resolution References: 1. E. Park, Daniel S., Saade Bou-Mikael, Sean King, Karsten E. Thompson, Clinton S. Willson, and Dimitris Nikitopoulos. "Design and Fabrication of Rock-Based Micromodel." <i>Volume 9: Micro- and Nano-Systems Engineering and Packaging, Parts A</i>					Δυσ	Defined Engineering Specifications	Received CT Define Scan From In Sponsors	Legend: ed Area of terest Finalized Cell Des	Design Ma Flow Sign	
and B (2012)	no. Du Vouctor T				Aug	Sep		INOV		

Sponsors: Dr. Karsten I nompson and Dr. Dimitris Nikitopoulos

College of Engineering Department of Mechanical & Industrial Engineering

ent

- el of a reservoir rock that: Berea Sandstone
- kisting LSU system

ion

lethods:

- CT scans performed by LSU Vet School by Dr. Michelle Osborn Geometries reconstructed using MATLAB and MeshLab
- % Overlap Comparison performed using custom MATLAB script

Results and Analysis

Predicted Velocity Distribution Overlaid on Manufactured Model at 165 µm depth

Conclusions: 3D printing porous media provides reasonable accuracy to desired data; however, SLA printers cannot currently produce the physical scale of reservoir rock. The measurable depth for microPIV prevents attaining a representative elementary volume.

Safety

- Standard lab safety procedures
- Eye protection from laser

