ME, ECE, IE Capstone Design Programs

Team 14: System for Metal Powder Production

Aaron Alford (ME), Brennen Brown (ME), Ling Fang (ME), Michael Guidry (ME), Kris Meche (ME)

Project Objectives

- Produce a working proof of concept system.
- Produce Titanium 64 \& 316 Stainless Steel powder.

Background

Selective Laser Melting (SLM) is a method of additive manufacturing for metal components. SLM requires fine metal powders (diameters of $10-45$ micrometers) that are also round and free of oxidation to ensure complete melting, solidification, and purity of each substrate layer. Small scale powder creation schemes are sought for quickening and lowering cost of SLM research.

Fig. 1 - Laser Penetration Depth vs Scanning Speed in SLM

Validation	
Specifications	Results
$<1 \% \mathrm{O}_{2}$ Concentration	$<0.25 \% \mathrm{O}_{2}$ (4.5 minutes)
Round, Smooth	Spherical, 0% oxidation in both
$10-45$ micron diameter	$6-8 \%$ yield, above target 5%

Safety
- Respirators and gloves worr when handling powder.
- Shielding installed to prevent dust and spark escape.

Fig. 2 - Physical Prototype

Fig. 4 - Input (L), Product (R)

Fig. 3 - Major Components

Budget	
Available - $\$ 14,000$	Used $-\$ 4,790.75$
Oxygen Sensor	$\$ 1,227$
Linear Traverse	$\$ 1,274.97$
TIG Torch	$\$ 688.52$
TIG Accessories	$\$ 332.08$
Exhaust Filter	$\$ 94.91$
Feedstock	$\$ 149.04$
Carbon Brushes	$\$ 150.30$
Chamber	$\$ 657.02$
CNC Work	$\$ 40$
Waterjet Work	$\$ 15$
Fasteners	$\$ 102.94$
Miscellaneous	$\$ 58.97$

Sponsors: Dr. Shengmin Guo, LaSPACE, National Science Foundation

