

Natural Gas Conference

Gas Supply Outlook for the Gulf of Mexico

Johnny Bradberry ConocoPhillips October 27, 2003

Outline

- Fundamentals/Current Situation
- Supply Sources
- Hurdles/Challenges
- Perspectives

The Arthur Anderson partner was on his phone when he said,

"Ship the Enron documents to the Feds,"

but his secretary heard,

"Rip the Enron documents to shreds."

It turns out that it was all just a case of bad cellular.

Sprint PCS The clear alternative to cellularSM

GOM Field Discoveries

Source: MMS 2003

GOM Gas Reserves & Production Reserves Additions by Discovery Year Annual Gas Production

While Number of GOM Shelf Discoveries Has Increased, Field Size Has Dropped

Discoveries & Reserves – GOM Deepwater

Number Of Fields Discovered & Average Reserves per Field By Decade

Includes Proved & Probable Reserves

Gas Production from the Shelf is Declining While Deepwater Gas Production is Rising

Gulf of Mexico Gas Production Total vs. Shelf and Deepwater

U. S. and Canadian Natural Gas Supply

* Includes lower-48 production, ethane rejection, and supplemental gas.

Sources of Incremental Natural Gas Supply, 2000-2025 (trillion cubic feet)

Source: NPC 2003

GOM Areas

GOM Shelf	
Status:	 Very mature 70% of current GOM supply Rapid decline Current reserves Drilling pace/success Rig availability New discoveries small in size
Prize:	Some shallow undiscovered reserves and deep shelf potential — >50 TCF (MMS 2000)
Challenges:	 Difficult drilling Aging infrastructure Rig availability for deep Acreage position
Who:	 Most majors have substantially decreased position Independents dominate

Deepwater

- - Current reserves
 - Projects under development
 - Discovery pace
 - Predominantly an oil play associated gas
- - Large reservoirs
 - Leverage existing discoveries
- **Challenges:**
 High cost per well/development
 - Technology not here yet for ultra deep
 - Project cycle time
- Who:
 Predominantly majors but independents
 aggressively moving in

GULF OF MEXICO DEEPWATER DEPOSITIONAL MODEL

Target Size Differences: Grand Isle 41\43\47 vs URSA

• URSA:

Appx 400 MMBOE Single structure 15 years to recover 10-50 MBOEPD/well Up to 11 wells Rec./well:10-40 MMBOE/compl

• Grand Isle 41/43/47

Appx 830 MMBOE 54 platforms 60-70 years to recover Recovery/well: 1.7MMBOE/well

.5-5 MBOEPD/ well +500 wells/+180 active

Technological Advances - Drilling

Sea bed is 1-2 miles below the rig:

Requires the latest in:

- Marine Riser Technology
- BOP Control Technology
 - Casing & Mud Program Design
 - **Dual Gradient Drilling**
 - AHC (Active Heave Compensated)
 - Vessel Positioning

High Tech.....High Cost

- What's the most notable difference between deepwater and shallower operations? The answer is resoundingly.....Costs!
- DW dev. well cost: \$25MM-\$40MM
 Shelf, avg dev. well : \$5MM-10MM
- DW drilling costs: \$250M-\$400M/day
 - on shelf : \$100M-\$140M/day
 - with rig rates on shelf being only \$30-40M/day compared to DW rates of \$120-\$220M/day

Deepwater - The Industry Responsibility

Safe, Environmentally Sensitive, Cost Effective Innovation

A MONUMENTAL STRATEGIC **CISION IS BEFORE US:**

WATER DEPTH IS CHALLENGING

. ENVIRONMENT IS HARSH

TECHNOLOGY IS UNCERTAIN

COSTS ARE RISKY

RESERVOIRS ARE SPECULATIVE

PRODUCT PRICES ARE LOW

BUT QUR FUTURE MAY DEPEND ON IT.

GULF OF MEXICO CONTINENTAL SHELF. 1043

5321 TR ROM 11. 13:22 TAL Ð 00 BBC. 10 ñ.t 101 20

0102002010 10 2013271705-22402 P.02/02

NOC

100

- 400

1.11:11:

物出

PAGE . 881

TOTAL

21

PAGE. 881

Eastern Gulf of Mexico

- - Can leverage existing infrastructure
- Challenges:
 Gaining access
 - Time to drill ready/total cycle time
 - Restrictions/permitting
 - Drilling

Who:
Output Stress And Stress

Supply Dichotomy? I'm sure glad the hole isn't in our end...

We Can't Wait Too Long!!!

Delivering Supply Won't Be Easy

♦ Shelf

- Production declining rapidly. Aggressive shallow drilling essential to help offset base decline. Deep gas is critical to filling supply expectation in the near term.
- Look for Independents to pick up pace particularly deep drilling.
- ♦ Majors could re-enter deep potential and improved incentives.

♦ Deepwater

- \diamond Gas production important in filling void created by shelf decline.
- \diamond Majors likely to stay primarily deepwater focused.
- \diamond Once EGOM moratorium is lifted, it will take time to supply gas.

- \diamond New technology an important part of the supply formula.
- \diamond Resource availability still a critical issue.
- ♦ Need improved regulatory permitting/approval process.
- Despite hurdles, outlook for GOM supply to satisfy forecasted demand is optimistic.

BACKUP

U.S. Rig Count and Production

^{*}Avg. consultants estimate for 2003 U.S. Production

US well production half-life*

- Natural gas well production rates have been declining steadily
- Rapid decline of productive capacity requires drilling more and more wells to maintain a given level of gas production

^{*} Months to reach 50% of initial production rate

Drilling has failed to increase production

Rig Counts Slow to Respond

