CO₂ Capture and Storage AEP's Perspective

Dan Duellman

Engineering Services American Electric Power

October 24, 2007

Strength & Scale in Assets & Operations

5.1 million customers in 11 states

Industry-leading size and scale of assets:

		Industr
<u>Asset</u>	<u>Size</u>	<u>Rank</u>
Domestic Generation	~38,400 MW	# 2
Transmission	~39,000 miles	# 1
Distribution	~208,000 miles	# 1

Source: Company research & Resource Data International Platts, PowerDat 2005

- Coal & transportation assets:
 - Control over 8,000 railcars
 - Own/lease and operate over 2,600 barges & 51 towboats
 - Coal handling terminal with 20 million tons of capacity
- 20,000 employees

AEP Generation Portfolio				
Coal	Gas	Nuclear	Hydro	Wind
67%	24%	6%	2%	1%

1

U.S. Electricity Generation Forecast*

* Base case from EIA "Annual Energy Outlook 2007"

Forecasted U.S. Electricity Sector CO₂ Emissions

ECTRIC POWER SEARCH INSTITUTE

EPRI Technology Deployment Targets

Technology	EIA 2007 Base Case	EPRI Analysis Target*
Efficiency	Load Growth ~ +1.5%/yr (includes historic rate of efficiency improvement)	Load Growth ~ +1.1%/yr (doubles rate of historic efficiency improvements)
Renewables	30 GWe by 2030	70 GWe by 2030
Nuclear Generation	12.5 GWe by 2030	64 GWe by 2030
Advanced Coal Generation	No Existing Plant Upgrades 40% New Plant Efficiency by 2020–2030	150 GWe Plant Upgrades 46% New Plant Efficiency by 2020; 49% in 2030
Carbon Capture and Storage (CCS)	None	Widely Available and Deployed After 2020
Plug-in Hybrid Electric Vehicles (PHEV)	None	10% of New Vehicle Sales by 2017; +2%/yr Thereafter
Distributed Energy Resources (DER) (including distributed solar)	< 0.1% of Base Load in 2030	5% of Base Load in 2030

EPRI analysis targets do not reflect economic considerations, or potential regulatory and siting constraints.

Benefit of Achieving Efficiency Target

Benefit of Achieving Renewables Target

Benefit of Achieving Nuclear Generation Target

Benefit of Achieving Advanced Coal Generation Target

Benefit of Achieving the CCS Target

Benefit of Achieving PHEV and DER Targets

EPRI CO₂ Reduction "Prism"

Fuels and CO₂ Emission Rates

Note: C/H is the mass ratio of carbon to hydrogen

Coal Technology Efficiency and CO₂ Emission Rates

Carbon Intensity for Different Systems

AEP

Note: "H.R." = Heat Rate (efficiency). Values represent typical heat rates, used here for illustrative purposes only.

15

CO₂ Capture Techniques

- Post-Combustion Capture Existing Units & Possible on New Units
 - Conventional or Advanced Amines, Chilled Ammonia
 - Key Points
 - Amine technologies commercially available in other industrial applications
 - Relatively low CO₂ concentration in flue gas More difficult to capture
 - High parasitic demand reduced unit output
 - Conventional Amine ~25-30%, Chilled Ammonia target ~10-15%
 - Amines are require <u>very</u> clean flue gas
- Modified-Combustion Capture Oxy Coal Firing
 - Key Points
 - Technology not yet proven at commercial scale
 - Creates stream of very high CO₂ concentration
 - High parasitic demand, >25%
- Pre-Combustion Capture
 - IGCC with Water-Gas Shift FutureGen Design
 - Key Points
 - Most of the processes commercially available in other industrial applications
 - Have never been integrated together
 - Turbine modified for H₂-based fuel, which has not yet been proven at commercial scale
 - Creates stream of very high CO₂ concentration
 - Parasitic demand (~20%) for CO₂ capture lower than amine or oxy-coal options

Approximate Cost of Electricity for SCPC and IGCC without and with 90% Carbon Capture¹

Source

1. Updated Cost and Performance Estimates for Clean Coal Technologies Including CO₂ Capture – 2006, EPRI, Technical Update,# 1013355, March 2007.

EPRI PC and IGCC Net Power Output With and Without CO₂ Capture (PRB Coal)

Alstom's Chilled Ammonia Process Post-Combustion Capture

(Ammonium Bicarbonate)

Alstom's Chilled Ammonia Process Post-Combustion Capture

B&W's Oxy-Coal Process Modified Combustion Capture

CO₂ Injectivity in the Mountaineer Area

CO₂ injection should also be possible in shallower sandstone and carbonate layers in the region

> Rose Run Sandstone (~7800 feet) is a regional candidate zone in Appalachian Basin

A high permeability zone called the "B zone" within Copper Ridge Dolomite has been identified as a new injection zone in the region

Mount Simon Sandstone/Basal Sand the most prominent reservoir in most of the Midwest but not desirable beneath Mountaineer site

Sedimentary Rocks A Microscopic View

Permeability much less than 0.01 mD

Shale with Extremely Low Permeability Forms Good Caprock

> Sandstone with Medium Permeability Forms Good Host Reservoir Medium Cost

Permeability 100 – 1,000 mD

Permeability 10 – 100 mD

Sandstone with High Permeability Forms Excellent Host Reservoir at Low Cost

Enhanced Oil Recover (EOR)

Graphic courtesy of USDOE National Energy Technology Laboratory

CO₂ Storage Key Points

Will require multiple wells

- Very geology-dependent
 - A 500 MW power plant could require a dozen or more wells at a spacing of several thousand feet or more
- Deep saline vs. EOR
 - Deep Saline = Permanent storage
 - EOR => CO₂ recycle and store...how much stays put?
- Challenges with storage
 - Not yet proven in large , long-term scale
 - Capacity and injection rates very site-specific
 - Long-term liability and legal ownership are points not yet resolved on federal or state level

Chilled Ammonia Technology Program

P

Oxy-Coal CO₂ Capture & Storage Project

Demonstration Scale

- 10 MW_e scale
- Teamed with B&W's Alliance Research Center and 16 other utilities
- Demo completion 4Q 2007
- AEP funding of \$50k

Commercial Scale

- Retrofit on existing AEP sub-critical unit (several available)
- 150 230 MW_e scale retrofit
- 4,000 5,000 tons CO₂ per day
- Teamed with B&W
- AEP funding of ~ \$200k \$3M for feasibility study
- Feasibility study completed 2Q 2008

Combustion conversion technology for existing coal fleet -longer lead time with enhanced viability and long-term potential

CHILLED AMMONIA PROCESS

Questions ?

